Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/132407
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMakoveeva, E. V.en
dc.contributor.authorAlexandrov, D. V.en
dc.date.accessioned2024-04-22T15:53:11Z-
dc.date.available2024-04-22T15:53:11Z-
dc.date.issued2021-
dc.identifier.citationMakoveeva, EV & Alexandrov, DV 2021, 'The influence of non-stationarity and interphase curvature on the growth dynamics of spherical crystals in a metastable liquid', Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Том. 379, № 2205, 20200307. https://doi.org/10.1098/rsta.2020.0307harvard_pure
dc.identifier.citationMakoveeva, E. V., & Alexandrov, D. V. (2021). The influence of non-stationarity and interphase curvature on the growth dynamics of spherical crystals in a metastable liquid. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2205), [20200307]. https://doi.org/10.1098/rsta.2020.0307apa_pure
dc.identifier.issn1364-503X
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Bronze Open Access3
dc.identifier.otherhttps://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2020.03071
dc.identifier.otherhttps://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2020.0307pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/132407-
dc.description.abstractThis manuscript is concerned with the theory of nucleation and evolution of a polydisperse ensemble of crystals in metastable liquids during the intermediate stage of a phase transformation process. A generalized growth rate of individual crystals is obtained with allowance for the effects of their non-stationary evolution in unsteady temperature (solute concentration) field and the phase transition temperature shift appearing due to the particle curvature (the Gibbs-Thomson effect) and atomic kinetics. A complete system of balance and kinetic equations determining the transient behaviour of the metastability degree and the particle-radius distribution function is analytically solved in a parametric form. The coefficient of mutual Brownian diffusion in the Fokker-Planck equation is considered in a generalized form defined by an Einstein relation. It is shown that the effects under consideration substantially change the desupercooling/desupersaturation dynamics and the transient behaviour of the particle-size distribution function. The asymptotic state of the distribution function (its 'tail'), which determines the relaxation dynamics of the concluding (Ostwald ripening) stage of a phase transformation process, is derived. This article is part of the theme issue 'Transport phenomena in complex systems (part 1)'. © 2021 The Author(s).en
dc.description.sponsorshipRussian Foundation for Basic Research, РФФИ, (19-32-90003)en
dc.description.sponsorshipRussian Science Foundation, RSF, (20-61-46013)en
dc.description.sponsorshipData accessibility. This article has no additional data. Authors’ contributions. All authors contributed equally to the present research article. Competing interests. The authors declare that they have no competing interests. Funding. This article contains two parts: (i) a new theory of the growth of an ensemble of spherical crystals in a metastable liquid and (ii) a computational simulation of crystal growth based on the developed theory. Part (i) was supported by the Russian Science Foundation (grant no. 20-61-46013), whereas part (ii) was made possible due to the financial support from the Russian Foundation for Basic Research (grant no. 19-32-90003).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherRoyal Society Publishingen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences2
dc.sourcePhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciencesen
dc.subjectDESUPERCOOLING/DESUPERSATURATIONen
dc.subjectDISTRIBUTION FUNCTIONen
dc.subjectEVOLUTION OF PARTICULATE ASSEMBLAGEen
dc.subjectMETASTABLE LIQUIDen
dc.subjectNUCLEATIONen
dc.subjectPHASE TRANSFORMATIONen
dc.subjectCRYSTALSen
dc.subjectDISTRIBUTION FUNCTIONSen
dc.subjectDYNAMICSen
dc.subjectFOKKER PLANCK EQUATIONen
dc.subjectGROWTH KINETICSen
dc.subjectINTEGRAL EQUATIONSen
dc.subjectPARTICLE SIZEen
dc.subjectPARTICLE SIZE ANALYSISen
dc.subjectPHASE TRANSITIONSen
dc.subjectTHERMOELECTRICITYen
dc.subjectEINSTEIN RELATIONSen
dc.subjectNON-STATIONARITIESen
dc.subjectNUCLEATION AND EVOLUTIONSen
dc.subjectPHASE TRANSFORMATION PROCESSen
dc.subjectRELAXATION DYNAMICSen
dc.subjectSOLUTE CONCENTRATIONSen
dc.subjectTRANSPORT PHENOMENAen
dc.subjectUNSTEADY TEMPERATURESen
dc.subjectARTICLEen
dc.subjectDIFFUSIONen
dc.subjectFRUIT RIPENINGen
dc.subjectGROWTH RATEen
dc.subjectINTERPHASEen
dc.subjectLEISUREen
dc.subjectPARTICLE SIZEen
dc.subjectPHASE TRANSITIONen
dc.subjectSOLUTEen
dc.subjectGROWTH RATEen
dc.titleThe influence of non-stationarity and interphase curvature on the growth dynamics of spherical crystals in a metastable liquiden
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi46973001-
dc.identifier.doi10.1098/rsta.2020.0307-
dc.identifier.scopus85111899861-
local.contributor.employeeMakoveeva E.V., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeAlexandrov D.V., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federationen
local.description.firstpage872
local.description.lastpage885
local.issue2205
local.volume379
dc.identifier.wos000675372800013-
local.contributor.departmentDepartment of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federationen
local.identifier.puref91d58bf-154e-4fb8-a1af-5292bc582004uuid
local.identifier.pure22985630-
local.description.order20200307
local.identifier.eid2-s2.0-85111899861-
local.identifier.wosWOS:000675372800013-
local.identifier.pmid34275364
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85111899861.pdf657,17 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.