Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/132391
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAkishev, G.en
dc.contributor.authorMyrzagaliyeva, A.en
dc.date.accessioned2024-04-22T15:53:04Z-
dc.date.available2024-04-22T15:53:04Z-
dc.date.issued2022-
dc.identifier.citationAkishev, G & Myrzagaliyeva, A 2022, 'ON ESTIMATES OF M-TERM APPROXIMATIONS ON CLASSES OF FUNCTIONS WITH BOUNDED MIXED DERIVATIVE IN THE LORENTZ SPACE', Journal of Mathematical Sciences, Том. 266, № 6, стр. 870-885. https://doi.org/10.1007/s10958-022-06146-7harvard_pure
dc.identifier.citationAkishev, G., & Myrzagaliyeva, A. (2022). ON ESTIMATES OF M-TERM APPROXIMATIONS ON CLASSES OF FUNCTIONS WITH BOUNDED MIXED DERIVATIVE IN THE LORENTZ SPACE. Journal of Mathematical Sciences, 266(6), 870-885. https://doi.org/10.1007/s10958-022-06146-7apa_pure
dc.identifier.issn1072-3374
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Bronze Open Access3
dc.identifier.otherhttps://link.springer.com/content/pdf/10.1007/s10958-022-06146-7.pdf1
dc.identifier.otherhttps://link.springer.com/content/pdf/10.1007/s10958-022-06146-7.pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/132391-
dc.description.abstractThe paper considers spaces of periodic functions of several variables, namely, the Lorentz space Lq,τ(T m) , the class of functions with bounded mixed fractional derivative Wq,τr¯, 1 < q, τ< ∞, and studies the order of the best M-term approximation of a function f∈ Lp,τ(T m) by trigonometric polynomials. The article consists of the introduction, the main part, and the conclusion. In the introduction, we introduce basic concepts, definitions, and necessary statements for the proof of the main results. You can also find information about previous results on the topic. In the main part, we establish exact-order estimates for the best M-term approximations of functions of the class Wq,τ1r¯ in the norm of the space Lp,τ2(Tm) for various relations between the parameters p, q, τ1, τ2. © 2023, The Author(s), under exclusive licence to Springer Nature Switzerland AG.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringeren
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceJournal of Mathematical Sciences2
dc.sourceJournal of Mathematical Sciences (United States)en
dc.subjectBEST M-TERM APPROXIMATIONen
dc.subjectLORENTZ SPACEen
dc.subjectMIXED DERIVATIVEen
dc.subjectTRIGONOMETRIC POLYNOMIALen
dc.titleON ESTIMATES OF M-TERM APPROXIMATIONS ON CLASSES OF FUNCTIONS WITH BOUNDED MIXED DERIVATIVE IN THE LORENTZ SPACEen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi59156153-
dc.identifier.doi10.1007/s10958-022-06146-7-
dc.identifier.scopus85150057938-
local.contributor.employeeAkishev G., Lomonosov Moscow State University, Kazakhstan Branch, 11 Kazhymukan Street, Astana, 010010, Kazakhstan, Institute of Natural Sciences and Mathematics, Ural Federal University, 4 Turgenov Street, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeMyrzagaliyeva A., Astana IT University, 55/11 Mangilik El Avenue, EXPO BC, Block C1, Astana, 010000, Kazakhstanen
local.description.firstpage870
local.description.lastpage885
local.issue6
local.volume266
local.contributor.departmentLomonosov Moscow State University, Kazakhstan Branch, 11 Kazhymukan Street, Astana, 010010, Kazakhstanen
local.contributor.departmentInstitute of Natural Sciences and Mathematics, Ural Federal University, 4 Turgenov Street, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentAstana IT University, 55/11 Mangilik El Avenue, EXPO BC, Block C1, Astana, 010000, Kazakhstanen
local.identifier.pured9418520-b11c-49a5-88b4-89475b1967a8uuid
local.identifier.pure41593935-
local.identifier.eid2-s2.0-85150057938-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85150057938.pdf3,15 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.