Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/132382
Название: | Electrolyte materials for protonic ceramic electrochemical cells: Main limitations and potential solutions |
Авторы: | Kasyanova, A. V. Zvonareva, I. A. Tarasova, N. A. Bi, L. Medvedev, D. A. Shao, Z. |
Дата публикации: | 2022 |
Издатель: | KeAi Communications Co. |
Библиографическое описание: | Kasyanova, AV, Zvonareva, IA, Tarasova, NA, Bi, L, Medvedev, DA & Shao, Z 2022, 'Electrolyte materials for protonic ceramic electrochemical cells: Main limitations and potential solutions', Materials Reports: Energy (MRE), Том. 2, № 4, 100158. https://doi.org/10.1016/j.matre.2022.100158 Kasyanova, A. V., Zvonareva, I. A., Tarasova, N. A., Bi, L., Medvedev, D. A., & Shao, Z. (2022). Electrolyte materials for protonic ceramic electrochemical cells: Main limitations and potential solutions. Materials Reports: Energy (MRE), 2(4), [100158]. https://doi.org/10.1016/j.matre.2022.100158 |
Аннотация: | Solid oxide fuel cells (SOFCs) and electrolysis cells (SOECs) are promising energy conversion devices, on whose basis green hydrogen energy technologies can be developed to support the transition to a carbon-free future. As compared with oxygen-conducting cells, the operational temperatures of protonic ceramic fuel cells (PCFCs) and electrolysis cells (PCECs) can be reduced by several hundreds of degrees (down to low- and intermediate-temperature ranges of 400–700 °C) while maintaining high performance and efficiency. This is due to the distinctive characteristics of charge carriers for proton-conducting electrolytes. However, despite achieving outstanding lab-scale performance, the prospects for industrial scaling of PCFCs and PCECs remain hazy, at least in the near future, in contrast to commercially available SOFCs and SOECs. In this review, we reveal the reasons for the delayed technological development, which need to be addressed in order to transfer fundamental findings into industrial processes. Possible solutions to the identified problems are also highlighted. © 2022 The Authors |
Ключевые слова: | ELECTROCHEMISTRY HYDROGEN ENERGY PROTON TRANSPORT PROTONIC CERAMIC ELECTROLYSIS CELLS (PCECS) PROTONIC CERAMIC FUEL CELLS (PCFCS) ELECTROCHEMICAL CELLS ELECTROLYSIS ELECTROLYTIC CELLS GAS FUEL PURIFICATION REGENERATIVE FUEL CELLS SOLID ELECTROLYTES CERAMIC FUEL CELLS ELECTROLYSIS CELL HYDROGEN ENERGY PERFORMANCE PROTON TRANSPORT PROTONIC PROTONIC CERAMIC ELECTROLYSE CELL PROTONIC CERAMIC FUEL CELL SOLID-OXIDE FUEL CELL SOLID OXIDE FUEL CELLS (SOFC) |
URI: | http://elar.urfu.ru/handle/10995/132382 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Идентификатор SCOPUS: | 85144909679 |
Идентификатор WOS: | 001234408800001 |
Идентификатор PURE: | 03f4dc6a-fc38-4620-bca7-9b0dd9ab6de3 36087018 |
ISSN: | 2666-9358 |
DOI: | 10.1016/j.matre.2022.100158 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85144909679.pdf | 3,87 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.