Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/132371
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTarasov, D.en
dc.contributor.authorTyagunov, A.en
dc.contributor.authorMilder, O.en
dc.date.accessioned2024-04-22T15:52:56Z-
dc.date.available2024-04-22T15:52:56Z-
dc.date.issued2022-
dc.identifier.citationTarasov, D, Tyagunov, A & Milder, O 2022, Simulation of the nickel superalloys solvus temperature by the deep learning artificial neural network with differential layer. в T Simos, T Simos, T Simos, C Tsitouras, Z Kalogiratou & T Monovasilis (ред.), International Conference of Computational Methods in Sciences and Engineering, ICCMSE 2021., 130008, AIP Conference Proceedings, Том. 2611, American Institute of Physics Inc., International Conference of Computational Methods in Sciences and Engineering 2021, ICCMSE 2021, Heraklion, Греция, 04/09/2021. https://doi.org/10.1063/5.0119488harvard_pure
dc.identifier.citationTarasov, D., Tyagunov, A., & Milder, O. (2022). Simulation of the nickel superalloys solvus temperature by the deep learning artificial neural network with differential layer. в T. Simos, T. Simos, T. Simos, C. Tsitouras, Z. Kalogiratou, & T. Monovasilis (Ред.), International Conference of Computational Methods in Sciences and Engineering, ICCMSE 2021 [130008] (AIP Conference Proceedings; Том 2611). American Institute of Physics Inc.. https://doi.org/10.1063/5.0119488apa_pure
dc.identifier.isbn978-073544247-4
dc.identifier.issn0094-243X
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Bronze Open Access3
dc.identifier.otherhttps://aip.scitation.org/doi/pdf/10.1063/5.01194881
dc.identifier.otherhttps://aip.scitation.org/doi/pdf/10.1063/5.0119488pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/132371-
dc.description.abstractSimulating the properties of complex alloys is an extremely challenging scientific task. The model should take into account a large number of uncorrelated factors, for many of which information may be absent or vague. The individual contribution of one or another chemical element out of a dozen possible ligants cannot be determined by traditional methods, and there are no general analytical models describing the effect of elements on the characteristics of alloys. Artificial neural networks are one of the few statistical simulation tools that may account many implicit correlations and establish correspondences that cannot be identified by other, more familiar mathematical methods. However, networks require complex tuning to achieve high performance. Data engineering and data preprocessing also makes a great contribution. This paper focuses on combining deep network configuration selection based on physics and input engineering to simulate the solvus temperature of nickel superalloys. © 2022 Author(s).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Institute of Physics Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAIP Conference Proceedings2
dc.sourceAIP Conference Proceedingsen
dc.subjectARTIFICIAL NEURAL NETWORKen
dc.subjectFRAMEWORKen
dc.subjectNICKEL SUPERALLOYSen
dc.subjectSIMULATIONen
dc.subjectSOLVUS TEMPERATUREen
dc.titleSimulation of the nickel superalloys solvus temperature by the deep learning artificial neural network with differential layeren
dc.typeConference paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.conference.name4 September 2021 through 7 September 2021en
dc.conference.dateInternational Conference of Computational Methods in Sciences and Engineering 2021, ICCMSE 2021
dc.identifier.doi10.1063/5.0119488-
dc.identifier.scopus85143158745-
local.contributor.employeeTarasov D., Ural Federal University, Yekaterinburg, Russian Federationen
local.contributor.employeeTyagunov A., Ural Federal University, Yekaterinburg, Russian Federationen
local.contributor.employeeMilder O., Ural Federal University, Yekaterinburg, Russian Federationen
local.volume2611
local.contributor.departmentUral Federal University, Yekaterinburg, Russian Federationen
local.identifier.purea898307d-4ce1-4406-a020-5d7939751f76uuid
local.identifier.pure32798726-
local.description.order130008
local.identifier.eid2-s2.0-85143158745-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85143158745.pdf687,27 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.