Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/132371
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tarasov, D. | en |
dc.contributor.author | Tyagunov, A. | en |
dc.contributor.author | Milder, O. | en |
dc.date.accessioned | 2024-04-22T15:52:56Z | - |
dc.date.available | 2024-04-22T15:52:56Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Tarasov, D, Tyagunov, A & Milder, O 2022, Simulation of the nickel superalloys solvus temperature by the deep learning artificial neural network with differential layer. в T Simos, T Simos, T Simos, C Tsitouras, Z Kalogiratou & T Monovasilis (ред.), International Conference of Computational Methods in Sciences and Engineering, ICCMSE 2021., 130008, AIP Conference Proceedings, Том. 2611, American Institute of Physics Inc., International Conference of Computational Methods in Sciences and Engineering 2021, ICCMSE 2021, Heraklion, Греция, 04/09/2021. https://doi.org/10.1063/5.0119488 | harvard_pure |
dc.identifier.citation | Tarasov, D., Tyagunov, A., & Milder, O. (2022). Simulation of the nickel superalloys solvus temperature by the deep learning artificial neural network with differential layer. в T. Simos, T. Simos, T. Simos, C. Tsitouras, Z. Kalogiratou, & T. Monovasilis (Ред.), International Conference of Computational Methods in Sciences and Engineering, ICCMSE 2021 [130008] (AIP Conference Proceedings; Том 2611). American Institute of Physics Inc.. https://doi.org/10.1063/5.0119488 | apa_pure |
dc.identifier.isbn | 978-073544247-4 | |
dc.identifier.issn | 0094-243X | |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access; Bronze Open Access | 3 |
dc.identifier.other | https://aip.scitation.org/doi/pdf/10.1063/5.0119488 | 1 |
dc.identifier.other | https://aip.scitation.org/doi/pdf/10.1063/5.0119488 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/132371 | - |
dc.description.abstract | Simulating the properties of complex alloys is an extremely challenging scientific task. The model should take into account a large number of uncorrelated factors, for many of which information may be absent or vague. The individual contribution of one or another chemical element out of a dozen possible ligants cannot be determined by traditional methods, and there are no general analytical models describing the effect of elements on the characteristics of alloys. Artificial neural networks are one of the few statistical simulation tools that may account many implicit correlations and establish correspondences that cannot be identified by other, more familiar mathematical methods. However, networks require complex tuning to achieve high performance. Data engineering and data preprocessing also makes a great contribution. This paper focuses on combining deep network configuration selection based on physics and input engineering to simulate the solvus temperature of nickel superalloys. © 2022 Author(s). | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | American Institute of Physics Inc. | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | AIP Conference Proceedings | 2 |
dc.source | AIP Conference Proceedings | en |
dc.subject | ARTIFICIAL NEURAL NETWORK | en |
dc.subject | FRAMEWORK | en |
dc.subject | NICKEL SUPERALLOYS | en |
dc.subject | SIMULATION | en |
dc.subject | SOLVUS TEMPERATURE | en |
dc.title | Simulation of the nickel superalloys solvus temperature by the deep learning artificial neural network with differential layer | en |
dc.type | Conference paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.conference.name | 4 September 2021 through 7 September 2021 | en |
dc.conference.date | International Conference of Computational Methods in Sciences and Engineering 2021, ICCMSE 2021 | |
dc.identifier.doi | 10.1063/5.0119488 | - |
dc.identifier.scopus | 85143158745 | - |
local.contributor.employee | Tarasov D., Ural Federal University, Yekaterinburg, Russian Federation | en |
local.contributor.employee | Tyagunov A., Ural Federal University, Yekaterinburg, Russian Federation | en |
local.contributor.employee | Milder O., Ural Federal University, Yekaterinburg, Russian Federation | en |
local.volume | 2611 | |
local.contributor.department | Ural Federal University, Yekaterinburg, Russian Federation | en |
local.identifier.pure | a898307d-4ce1-4406-a020-5d7939751f76 | uuid |
local.identifier.pure | 32798726 | - |
local.description.order | 130008 | |
local.identifier.eid | 2-s2.0-85143158745 | - |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85143158745.pdf | 687,27 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.