Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/132322
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorPerevalova, T.en
dc.contributor.authorSatov, A.en
dc.date.accessioned2024-04-22T15:52:33Z-
dc.date.available2024-04-22T15:52:33Z-
dc.date.issued2022-
dc.identifier.citationPerevalova, T & Satov, A 2022, Numerical methods for stochastic sensitivity analysis of 2D chaotic attractors. в MD Todorov (ред.), Application of Mathematics in Technical and Natural Sciences - 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, AMiTaNS 2021., 100009, AIP Conference Proceedings, Том. 2522, American Institute of Physics Inc., 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, AMiTaNS 2021, Albena, Болгария, 24/06/2021. https://doi.org/10.1063/5.0101205harvard_pure
dc.identifier.citationPerevalova, T., & Satov, A. (2022). Numerical methods for stochastic sensitivity analysis of 2D chaotic attractors. в M. D. Todorov (Ред.), Application of Mathematics in Technical and Natural Sciences - 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, AMiTaNS 2021 [100009] (AIP Conference Proceedings; Том 2522). American Institute of Physics Inc.. https://doi.org/10.1063/5.0101205apa_pure
dc.identifier.isbn978-073544361-7
dc.identifier.issn0094-243X
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Bronze Open Access3
dc.identifier.otherhttps://aip.scitation.org/doi/pdf/10.1063/5.01012051
dc.identifier.otherhttps://aip.scitation.org/doi/pdf/10.1063/5.0101205pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/132322-
dc.description.abstractThe paper presents constructive algorithms for finding the outer boundaries of chaotic attractors, based on a geometric selection of points of critical lines belonging only to the outer boundary. In the theory of dynamical discrete-time systems, critical lines play a key role. These lines facilitate the study of the dynamic properties of noninvertible maps and to describe the boundaries of a chaotic attractor. The previously constructed stochastic sensitivity function for chaotic attractors is based on critical lines and lets us estimate the dispersion of random states around the chaotic attractor. However, the technical problem is complicated by the fact that the critical lines describe not only the external boundaries, but also structures inside the chaotic attractor. Our algorithms are tested for complex non-convex forms of chaotic attractors. Based on the algorithms, we solve the problem of finding confidence domains around chaotic attractors of stochastic systems. © 2022 Author(s).en
dc.description.sponsorshipRussian Science Foundation, RSF, (N 21-11-00062)en
dc.description.sponsorshipThe work was supported by Russian Science Foundation (N 21-11-00062).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Institute of Physics Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAPPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’212
dc.sourceAIP Conference Proceedingsen
dc.titleNumerical methods for stochastic sensitivity analysis of 2D chaotic attractorsen
dc.typeConference paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.conference.name24 June 2021 through 29 June 2021en
dc.conference.date13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, AMiTaNS 2021
dc.identifier.doi10.1063/5.0101205-
dc.identifier.scopus85140223340-
local.contributor.employeePerevalova T., Institute of Natural Sciences and Mathematics, Ural Federal University, 4, 602 Turgenev str, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeSatov A., Institute of Natural Sciences and Mathematics, Ural Federal University, 4, 602 Turgenev str, Ekaterinburg, 620000, Russian Federationen
local.volume2522
local.contributor.departmentInstitute of Natural Sciences and Mathematics, Ural Federal University, 4, 602 Turgenev str, Ekaterinburg, 620000, Russian Federationen
local.identifier.purec15d75a6-4975-43a5-844e-e67a3a90e3a0uuid
local.identifier.pure31055808-
local.description.order100009
local.identifier.eid2-s2.0-85140223340-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85140223340.pdf25,85 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.