Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/132320
Название: | Stochastic generation of bursting oscillations in the spiking region of a 3D neuron model with the Lukyanov-Shilnikov bifurcation |
Авторы: | Slepukhina, E. Ryashko, L. |
Дата публикации: | 2022 |
Издатель: | American Institute of Physics Inc. |
Библиографическое описание: | Slepukhina, E & Ryashko, L 2022, Stochastic generation of bursting oscillations in the spiking region of a 3D neuron model with the Lukyanov-Shilnikov bifurcation. в MD Todorov (ред.), Application of Mathematics in Technical and Natural Sciences - 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, AMiTaNS 2021., 050012, AIP Conference Proceedings, Том. 2522, American Institute of Physics Inc., 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, AMiTaNS 2021, Albena, Болгария, 24/06/2021. https://doi.org/10.1063/5.0100926 Slepukhina, E., & Ryashko, L. (2022). Stochastic generation of bursting oscillations in the spiking region of a 3D neuron model with the Lukyanov-Shilnikov bifurcation. в M. D. Todorov (Ред.), Application of Mathematics in Technical and Natural Sciences - 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, AMiTaNS 2021 [050012] (AIP Conference Proceedings; Том 2522). American Institute of Physics Inc.. https://doi.org/10.1063/5.0100926 |
Аннотация: | A stochastic three-dimensional neuron model with the Lukyanov-Shilnikov bifurcation is studied. We show that in the parameter region where the deterministic system exhibits tonic spiking regime with a single stable limit cycle, noise can induce bursting activity. This stochastic phenomenon is confirmed by changes in spacial and temporal characteristics of oscillations. The probabilistic mechanism of the stochastic generation of bursting is studied by means of the stochastic sensitivity functions and Mahalanobis metrics. © 2022 Author(s). |
URI: | http://elar.urfu.ru/handle/10995/132320 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Конференция/семинар: | 24 June 2021 through 29 June 2021 |
Дата конференции/семинара: | 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, AMiTaNS 2021 |
Идентификатор SCOPUS: | 85140209151 |
Идентификатор PURE: | 8b747021-de34-4b08-ba90-5876a5a14e31 31047938 |
ISSN: | 0094-243X |
ISBN: | 978-073544361-7 |
DOI: | 10.1063/5.0100926 |
Сведения о поддержке: | Russian Science Foundation, RSF, (N 21-11-00062) The work was supported by Russian Science Foundation (N 21-11-00062). |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85140209151.pdf | 643,72 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.