Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/132197
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMacías-Díaz, J. E.en
dc.contributor.authorHendy, A. S.en
dc.contributor.authorDe, Staelen, R. H.en
dc.date.accessioned2024-04-17T17:43:38Z-
dc.date.available2024-04-17T17:43:38Z-
dc.date.issued2018-
dc.identifier.citationMacias-Diaz, J. E., Hendy, A. S., & De Staelen, R. H. (2018). A pseudo energy-invariant method for relativistic wave equations with Riesz space-fractional derivatives. Computer Physics Communications, 224, 98-107. https://doi.org/10.1016/j.cpc.2017.11.008apa_pure
dc.identifier.issn0010-4655-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://biblio.ugent.be/publication/8549240/file/8652449pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/132197-
dc.description.abstractIn this work, we investigate a general nonlinear wave equation with Riesz space-fractional derivatives that generalizes various classical hyperbolic models, including the sine-Gordon and the Klein–Gordon equations from relativistic quantum mechanics. A finite-difference discretization of the model is provided using fractional centered differences. The method is a technique that is capable of preserving an energy-like quantity at each iteration. Some computational comparisons against solutions available in the literature are performed in order to assess the capability of the method to preserve the invariant. Our experiments confirm that the technique yields good approximations to the solutions considered. As an application of our scheme, we provide simulations that confirm, for the first time in the literature, the presence of the phenomenon of nonlinear supratransmission in Riesz space-fractional Klein–Gordon equations driven by a harmonic perturbation at the boundary. © 2017 Elsevier B.V.en
dc.description.sponsorshipFWO15/PDO/076en
dc.description.sponsorshipThe third author acknowledges the support of the Research Foundation—Flanders ( FWO15/PDO/076 ). Finally, the authors wish to thank the anonymous reviewers and the editor in charge of handling this paper for their suggestions and criticisms. Their comments helped in improving the quality of this manuscript.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceComputer Physics Communications2
dc.sourceComputer Physics Communicationsen
dc.subjectENERGY-PRESERVING FINITE-DIFFERENCE SCHEMEen
dc.subjectNONLINEAR RELATIVISTIC WAVE EQUATIONen
dc.subjectNONLINEAR SUPRATRANSMISSIONen
dc.subjectRIESZ SPACE-FRACTIONAL DERIVATIVESen
dc.subjectFINITE DIFFERENCE METHODen
dc.subjectITERATIVE METHODSen
dc.subjectQUANTUM THEORYen
dc.subjectSINE-GORDON EQUATIONen
dc.subjectCOMPUTATIONAL COMPARISONSen
dc.subjectFINITE DIFFERENCE SCHEMEen
dc.subjectFINITE-DIFFERENCE DISCRETIZATIONen
dc.subjectFRACTIONAL DERIVATIVESen
dc.subjectNONLINEAR SUPRATRANSMISSIONen
dc.subjectNONLINEAR WAVE EQUATIONen
dc.subjectRELATIVISTIC QUANTUM MECHANICSen
dc.subjectRELATIVISTIC WAVE EQUATIONSen
dc.subjectNONLINEAR EQUATIONSen
dc.titleA pseudo energy-invariant method for relativistic wave equations with Riesz space-fractional derivativesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.cpc.2017.11.008-
dc.identifier.scopus85036615303-
local.contributor.employeeMacías-Díaz, J.E., Departamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria, Aguascalientes, 20131, Mexicoen
local.contributor.employeeHendy, A.S., Department of Computational Mathematics and Computer Science, Institute of Natural sciences and Mathematics, Ural Federal University, ul. Mira. 19, Yekaterinburg, 620002, Russian Federation, Department of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypten
local.contributor.employeeDe Staelen, R.H., Department of Mathematical Analysis, Research group of Numerical Analysis and Mathematical Modeling (NaM2), Ghent University, Ghent, 9000, Belgiumen
local.description.firstpage98-
local.description.lastpage107-
local.volume224-
dc.identifier.wos000424726700008-
local.contributor.departmentDepartamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria, Aguascalientes, 20131, Mexicoen
local.contributor.departmentDepartment of Computational Mathematics and Computer Science, Institute of Natural sciences and Mathematics, Ural Federal University, ul. Mira. 19, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentDepartment of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypten
local.contributor.departmentDepartment of Mathematical Analysis, Research group of Numerical Analysis and Mathematical Modeling (NaM2), Ghent University, Ghent, 9000, Belgiumen
local.identifier.pure6513864-
local.identifier.eid2-s2.0-85036615303-
local.identifier.wosWOS:000424726700008-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85036615303.pdf1,45 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.