Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/132197
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Macías-Díaz, J. E. | en |
dc.contributor.author | Hendy, A. S. | en |
dc.contributor.author | De, Staelen, R. H. | en |
dc.date.accessioned | 2024-04-17T17:43:38Z | - |
dc.date.available | 2024-04-17T17:43:38Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Macias-Diaz, J. E., Hendy, A. S., & De Staelen, R. H. (2018). A pseudo energy-invariant method for relativistic wave equations with Riesz space-fractional derivatives. Computer Physics Communications, 224, 98-107. https://doi.org/10.1016/j.cpc.2017.11.008 | apa_pure |
dc.identifier.issn | 0010-4655 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.other | https://biblio.ugent.be/publication/8549240/file/8652449 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/132197 | - |
dc.description.abstract | In this work, we investigate a general nonlinear wave equation with Riesz space-fractional derivatives that generalizes various classical hyperbolic models, including the sine-Gordon and the Klein–Gordon equations from relativistic quantum mechanics. A finite-difference discretization of the model is provided using fractional centered differences. The method is a technique that is capable of preserving an energy-like quantity at each iteration. Some computational comparisons against solutions available in the literature are performed in order to assess the capability of the method to preserve the invariant. Our experiments confirm that the technique yields good approximations to the solutions considered. As an application of our scheme, we provide simulations that confirm, for the first time in the literature, the presence of the phenomenon of nonlinear supratransmission in Riesz space-fractional Klein–Gordon equations driven by a harmonic perturbation at the boundary. © 2017 Elsevier B.V. | en |
dc.description.sponsorship | FWO15/PDO/076 | en |
dc.description.sponsorship | The third author acknowledges the support of the Research Foundation—Flanders ( FWO15/PDO/076 ). Finally, the authors wish to thank the anonymous reviewers and the editor in charge of handling this paper for their suggestions and criticisms. Their comments helped in improving the quality of this manuscript. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Elsevier B.V. | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Computer Physics Communications | 2 |
dc.source | Computer Physics Communications | en |
dc.subject | ENERGY-PRESERVING FINITE-DIFFERENCE SCHEME | en |
dc.subject | NONLINEAR RELATIVISTIC WAVE EQUATION | en |
dc.subject | NONLINEAR SUPRATRANSMISSION | en |
dc.subject | RIESZ SPACE-FRACTIONAL DERIVATIVES | en |
dc.subject | FINITE DIFFERENCE METHOD | en |
dc.subject | ITERATIVE METHODS | en |
dc.subject | QUANTUM THEORY | en |
dc.subject | SINE-GORDON EQUATION | en |
dc.subject | COMPUTATIONAL COMPARISONS | en |
dc.subject | FINITE DIFFERENCE SCHEME | en |
dc.subject | FINITE-DIFFERENCE DISCRETIZATION | en |
dc.subject | FRACTIONAL DERIVATIVES | en |
dc.subject | NONLINEAR SUPRATRANSMISSION | en |
dc.subject | NONLINEAR WAVE EQUATION | en |
dc.subject | RELATIVISTIC QUANTUM MECHANICS | en |
dc.subject | RELATIVISTIC WAVE EQUATIONS | en |
dc.subject | NONLINEAR EQUATIONS | en |
dc.title | A pseudo energy-invariant method for relativistic wave equations with Riesz space-fractional derivatives | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1016/j.cpc.2017.11.008 | - |
dc.identifier.scopus | 85036615303 | - |
local.contributor.employee | Macías-Díaz, J.E., Departamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria, Aguascalientes, 20131, Mexico | en |
local.contributor.employee | Hendy, A.S., Department of Computational Mathematics and Computer Science, Institute of Natural sciences and Mathematics, Ural Federal University, ul. Mira. 19, Yekaterinburg, 620002, Russian Federation, Department of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypt | en |
local.contributor.employee | De Staelen, R.H., Department of Mathematical Analysis, Research group of Numerical Analysis and Mathematical Modeling (NaM2), Ghent University, Ghent, 9000, Belgium | en |
local.description.firstpage | 98 | - |
local.description.lastpage | 107 | - |
local.volume | 224 | - |
dc.identifier.wos | 000424726700008 | - |
local.contributor.department | Departamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria, Aguascalientes, 20131, Mexico | en |
local.contributor.department | Department of Computational Mathematics and Computer Science, Institute of Natural sciences and Mathematics, Ural Federal University, ul. Mira. 19, Yekaterinburg, 620002, Russian Federation | en |
local.contributor.department | Department of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypt | en |
local.contributor.department | Department of Mathematical Analysis, Research group of Numerical Analysis and Mathematical Modeling (NaM2), Ghent University, Ghent, 9000, Belgium | en |
local.identifier.pure | 6513864 | - |
local.identifier.eid | 2-s2.0-85036615303 | - |
local.identifier.wos | WOS:000424726700008 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85036615303.pdf | 1,45 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.