Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/131581
Название: | Exact Solutions to Navier–Stokes Equations Describing a Gradient Nonuniform Unidirectional Vertical Vortex Fluid Flow |
Авторы: | Burmasheva, N. Prosviryakov, E. |
Дата публикации: | 2022 |
Издатель: | Multidisciplinary Digital Publishing Institute (MDPI) |
Библиографическое описание: | Burmasheva, N & Prosviryakov, E 2022, 'Exact Solutions to Navier–Stokes Equations Describing a Gradient Nonuniform Unidirectional Vertical Vortex Fluid Flow', Dynamics, Том. 2, № 2, стр. 175-186. https://doi.org/10.3390/dynamics2020009 Burmasheva, N., & Prosviryakov, E. (2022). Exact Solutions to Navier–Stokes Equations Describing a Gradient Nonuniform Unidirectional Vertical Vortex Fluid Flow. Dynamics, 2(2), 175-186. https://doi.org/10.3390/dynamics2020009 |
Аннотация: | The paper announces a family of exact solutions to Navier–Stokes equations describing gradient inhomogeneous unidirectional fluid motions (nonuniform Poiseuille flows). The structure of the fluid motion equations is such that the incompressibility equation enables us to establish the velocity defect law for nonuniform Poiseuille flow. In this case, the velocity field is dependent on two coordinates and time, and it is an arbitrary-degree polynomial relative to the horizontal (longitudinal) coordinate. The polynomial coefficients depend on the vertical (transverse) coordinate and time. The exact solution under consideration was built using the method of indefinite coefficients and the use of such algebraic operations was for addition and multiplication. As a result, to determine the polynomial coefficients, we derived a system of simplest homogeneous and inhomogeneous parabolic partial equations. The order of integration of the resulting system of equations was recurrent. For a special case of steady flows of a viscous fluid, these equations are ordinary differential equations. The article presents an algorithm for their integration. In this case, all components of the velocity field, vorticity vector, and shear stress field are polynomial functions. In addition, it has been noted that even without taking into account the thermohaline convection (creeping current) all these fields have a rather complex structure. © 2022 by the authors. |
Ключевые слова: | EXACT SOLUTION METHOD OF SEPARATION OF VARIABLES NAVIER–STOKES EQUATION NONUNIFORM FLOW POISEUILLE FLOW SPECIFIC HELICITY SPECIFIC KINETIC ENERGY TANGENTIAL STRESS UNIDIRECTIONAL FLOW |
URI: | http://elar.urfu.ru/handle/10995/131581 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/ |
Идентификатор SCOPUS: | 85137121969 |
Идентификатор PURE: | 50640481 dc165f96-2fef-4ae6-9fc8-1bb02c59d854 |
ISSN: | 2673-8716 |
DOI: | 10.3390/dynamics2020009 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85137121969.pdf | 327,75 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons