Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131573
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAlexandrov, D. V.en
dc.contributor.authorGalenko, P. K.en
dc.contributor.authorToropova, L. V.en
dc.date.accessioned2024-04-08T11:08:05Z-
dc.date.available2024-04-08T11:08:05Z-
dc.date.issued2022-
dc.identifier.citationAlexandrov, DV, Galenko, PK & Toropova, LV 2022, 'Anomalous Dynamics of Recalescence Front in Crystal Growth Processes: Theoretical Background', Crystals, Том. 12, № 12, 1686. https://doi.org/10.3390/cryst12121686harvard_pure
dc.identifier.citationAlexandrov, D. V., Galenko, P. K., & Toropova, L. V. (2022). Anomalous Dynamics of Recalescence Front in Crystal Growth Processes: Theoretical Background. Crystals, 12(12), [1686]. https://doi.org/10.3390/cryst12121686apa_pure
dc.identifier.issn2073-4352-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://www.mdpi.com/2073-4352/12/12/1686/pdf?version=16691130291
dc.identifier.otherhttps://www.mdpi.com/2073-4352/12/12/1686/pdf?version=1669113029pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/131573-
dc.description.abstractA theory for crystal nucleation and growth with the recalescence front is developed. The theory is based on the saddle-point technique for evaluating a Laplace-type integral as well as the small parameter method for solving the moving boundary heat transfer problem. The theory developed shows the U-shaped behavior of the growth velocity–melt undercooling curve. The ordinary upward branch of this curve is caused by the growth dictated by heat transport and the predominant crystal growth, while the unusual downward branch demonstrates the anomalous behavior caused by the predominant nucleation and attachment kinetics of the growing crystals to the phase interface. Such a U-shaped behavior of the growth velocity–melt undercooling curve is consistent with experimental data carried out on the ground, under reduced gravity during parabolic flights, and in the microgravity conditions onboard the International Space Station [M. Reinartz et al., JOM 74, 2420 (2022); P.K. Galenko et al., Acta Mater. 241, 118384 (2022)]. © 2022 by the authors.en
dc.description.sponsorshipRussian Science Foundation, RSF, (21-19-00279)en
dc.description.sponsorshipThis study was supported by the Russian Science Foundation (project no. 21-19-00279).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen
dc.relationinfo:eu-repo/grantAgreement/RSF//21-19-00279en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceCrystals2
dc.sourceCrystalsen
dc.subjectANOMALOUS DYNAMICSen
dc.subjectCRYSTAL GROWTHen
dc.subjectMOVING BOUNDARY PROBLEMen
dc.subjectNUCLEATIONen
dc.subjectRECALESCENCE FRONTen
dc.subjectSOLIDIFICATIONen
dc.subjectUNDERCOOLINGen
dc.titleAnomalous Dynamics of Recalescence Front in Crystal Growth Processes: Theoretical Backgrounden
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/cryst12121686-
dc.identifier.scopus85144732591-
local.contributor.employeeAlexandrov D.V., Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeGalenko P.K., Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federation, Otto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität-Jena, Jena, 07743, Germanyen
local.contributor.employeeToropova L.V., Otto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität-Jena, Jena, 07743, Germany, Laboratory of Mathematical Modeling of Physical and Chemical Processes in Multiphase Media, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.issue12-
local.volume12-
dc.identifier.wos000900466900001-
local.contributor.departmentLaboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.contributor.departmentOtto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität-Jena, Jena, 07743, Germanyen
local.contributor.departmentLaboratory of Mathematical Modeling of Physical and Chemical Processes in Multiphase Media, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.identifier.pure33222128-
local.identifier.pureda4cefa0-f59e-42ea-a5f4-825e07dc0ad7uuid
local.description.order1686-
local.identifier.eid2-s2.0-85144732591-
local.fund.rsf21-19-00279-
local.identifier.wosWOS:000900466900001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85144732591.pdf371,03 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons