Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/131569
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nikishina, M. A. | en |
dc.contributor.author | Alexandrov, D. V. | en |
dc.date.accessioned | 2024-04-08T11:08:04Z | - |
dc.date.available | 2024-04-08T11:08:04Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Nikishina, MA & Alexandrov, DV 2022, 'Mathematical Modeling of Nucleation and Growth Processes of Ellipsoidal Crystals in Binary Melts', Crystals, Том. 12, № 10, 1495. https://doi.org/10.3390/cryst12101495 | harvard_pure |
dc.identifier.citation | Nikishina, M. A., & Alexandrov, D. V. (2022). Mathematical Modeling of Nucleation and Growth Processes of Ellipsoidal Crystals in Binary Melts. Crystals, 12(10), [1495]. https://doi.org/10.3390/cryst12101495 | apa_pure |
dc.identifier.issn | 2073-4352 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access; Gold Open Access | 3 |
dc.identifier.other | https://www.mdpi.com/2073-4352/12/10/1495/pdf?version=1666339143 | 1 |
dc.identifier.other | https://www.mdpi.com/2073-4352/12/10/1495/pdf?version=1666339143 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/131569 | - |
dc.description.abstract | The transient behavior of an ensemble of ellipsoidal particles in a supercooled binary melt is considered. The model laws, based on the Fokker-Planck type kinetic equation for the particle-volume distribution function, the thermal and mass integral balances for the binary melt temperature and solute concentration, as well as the corresponding boundary and initial conditions, are formulated and solved analytically. We show that the temperature and concentration increase with time due to the effects of impurity displacement and latent heat emission by the growing ellipsoidal particles. These effects are also responsible for metastability reduction. As this takes place, increasing the initial solute concentration in a metastable binary melt increases the intensity of its desupercooling. The theory is developed for arbitrary nucleation frequency with special consideration of two important nucleation kinetics according to the Meirs and Weber-Volmer-Frenkel Zel’dovich mechanisms. An analytical solution to the integrodifferential model equations is found in a parametric form. The theory contains all limiting transitions to previously developed analytical approaches. Namely, it contains the growth of spherical crystals in binary melts and ellipsoidal crystals in single-component melts. © 2022 by the authors. | en |
dc.description.sponsorship | Russian Science Foundation, RSF, (18-19-00008) | en |
dc.description.sponsorship | This work was supported by the Russian Science Foundation (project no. 18-19-00008). | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | MDPI | en |
dc.relation | info:eu-repo/grantAgreement/RSF//18-19-00008 | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.rights | cc-by | other |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | unpaywall |
dc.source | Crystals | 2 |
dc.source | Crystals | en |
dc.subject | BINARY MELTS | en |
dc.subject | CRYSTAL GROWTH | en |
dc.subject | ELLIPSOIDAL PARTICLES | en |
dc.subject | NUCLEATION | en |
dc.subject | PARTICULATE ASSEMBLAGES | en |
dc.title | Mathematical Modeling of Nucleation and Growth Processes of Ellipsoidal Crystals in Binary Melts | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.3390/cryst12101495 | - |
dc.identifier.scopus | 85140725011 | - |
local.contributor.employee | Nikishina M.A., Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federation | en |
local.contributor.employee | Alexandrov D.V., Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federation | en |
local.issue | 10 | - |
local.volume | 12 | - |
dc.identifier.wos | 000874081800001 | - |
local.contributor.department | Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federation | en |
local.identifier.pure | 31573277 | - |
local.identifier.pure | 24cb18f8-4942-4c2c-b78e-86af56545725 | uuid |
local.description.order | 1495 | - |
local.identifier.eid | 2-s2.0-85140725011 | - |
local.fund.rsf | 18-19-00008 | - |
local.identifier.wos | WOS:000874081800001 | - |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85140725011.pdf | 578,69 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License