Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131416
Название: Natural language processing for clusterization of genes according to their functions
Авторы: Dordiuk, V.
Demicheva, E.
Espino, F. P.
Ushenin, K.
Дата публикации: 2022
Издатель: Institute of Electrical and Electronics Engineers Inc.
Библиографическое описание: Dordiuk, V, Demicheva, E, Espino, FP & Ushenin, K 2022, Natural language processing for clusterization of genes according to their functions. в Proceedings - 2022 Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine, CSGB 2022. Proceedings - 2022 Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine, CSGB 2022, Institute of Electrical and Electronics Engineers Inc., стр. 1-4. https://doi.org/10.1109/CSGB56354.2022.9865330
Dordiuk, V., Demicheva, E., Espino, F. P., & Ushenin, K. (2022). Natural language processing for clusterization of genes according to their functions. в Proceedings - 2022 Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine, CSGB 2022 (стр. 1-4). (Proceedings - 2022 Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine, CSGB 2022). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CSGB56354.2022.9865330
Аннотация: There are hundreds of methods for analysis of data obtained in mRNA-sequencing. The most of them are focused on small number of genes. In this study, we propose an approach that reduces the analysis of several thousand genes to analysis of several clusters. The list of genes is enriched with information from open databases. Then, the descriptions are encoded as vectors using the pretrained language model (BERT) and some text processing approaches. The encoded gene function pass through the dimensionality reduction and clusterization. Aiming to find the most efficient pipeline, 180 cases of pipeline with different methods in the major pipeline steps were analyzed. The performance was evaluated with clusterization indexes and expert review of the results. © 2022 IEEE.
Ключевые слова: BERT
CLUSTERIZATION
DIFFERENTIAL GENE EXPRESSION ANALYSIS
GENE EXPRESSION
GENE ONTOLOGY
NATURAL LANGUAGE PROCESSING
SEMANTIC ANALYSIS
GENE ONTOLOGY
NATURAL LANGUAGE PROCESSING SYSTEMS
PIPELINES
SEMANTICS
TEXT PROCESSING
BERT
CLUSTERIZATION
DIFFERENTIAL GENE EXPRESSION ANALYSE
DIFFERENTIAL GENE EXPRESSIONS
GENE EXPRESSION ANALYSIS
GENE ONTOLOGY
GENES EXPRESSION
LANGUAGE PROCESSING
NATURAL LANGUAGE PROCESSING
NATURAL LANGUAGES
SEMANTIC ANALYSIS
GENE EXPRESSION
URI: http://elar.urfu.ru/handle/10995/131416
Условия доступа: info:eu-repo/semantics/openAccess
Конференция/семинар: 7 July 2022 through 8 July 2022
Дата конференции/семинара: 2022 Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine, CSGB 2022
Идентификатор SCOPUS: 85138478040
Идентификатор PURE: 30979989
09b7ecd7-fbc7-4fce-a67d-a7d6086d37f3
ISBN: 978-166545288-5
DOI: 10.1109/CSGB56354.2022.9865330
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85138478040.pdf1,86 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.