Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131411
Название: Data Processing Technology for the Forecasting of the Water Inflow into a Reservoir with the Use of Earth Remote Sensing and the Network of Meteorological and Hydrological Posts
Авторы: Eroshenko, S. A.
Matrenin, P. V.
Khalyasmaa, A. I.
Klimenko, D. E.
Sidorova, A. V.
Дата публикации: 2022
Издатель: Institute of Power Engineering
Библиографическое описание: Eroshenko, SA, Matrenin, PV, Khalyasmaa, AI, Klimenko, DE & Sidorova, AV 2022, 'Data Processing Technology for the Forecasting of the Water Inflow into a Reservoir with the Use of Earth Remote Sensing and the Network of Meteorological and Hydrological Posts', Problems of the Regional Energetics, № 4(56), стр. 100-109. https://doi.org/10.52254/1857-0070.2022.4-56.09
Eroshenko, S. A., Matrenin, P. V., Khalyasmaa, A. I., Klimenko, D. E., & Sidorova, A. V. (2022). Data Processing Technology for the Forecasting of the Water Inflow into a Reservoir with the Use of Earth Remote Sensing and the Network of Meteorological and Hydrological Posts. Problems of the Regional Energetics, (4(56)), 100-109. https://doi.org/10.52254/1857-0070.2022.4-56.09
Аннотация: Management of the hydropower plants requires the economically efficient use of water resources based on the forecasts and simulation models of the hydropower plant and the reservoir. There are various data sources for the water inflow forecasting: meteorological and hydrological posts, Earth remote sensing. However, the problem arises of combining the specified heterogeneous data for aggregated processing with the use of machine learning methods. The research goal is to design an architecture of a system for collecting and processing the data from various sources to operational forecast of the water inflow and the reservoir water-level. It was achieved by analyzing and selecting the sources and methods for the use of Earth remote sensing data; observing the main principles of hydrological modeling; assessing the availability of the different data; analyzing the ways of increasing the observability of the hydrological objects by installing additional meteorological and hydrological posts; and designing a technology for the automatic data collection and processing. The most significant results are developed architecture of the data collection and processing system and the technology for aggregating heterogeneous data with the use of machine learning methods. It is aimed to reduce the error of short-term forecasting of the water inflow to the reservoir. The significance of the results lies in the fact that the proposed technology was offered and justified for a real hydropower plant; and it can improve the water resources management efficiency: increase the energy generation, minimize the sterile spills, increase the flood forecasting horizon and reduce the risk of flooding during the spring high water. © 2022 Izdatel'stvo Meditsina. All rights reserved.
Ключевые слова: ARCHITECTURE OF THE INFORMATION SYSTEM
DATA COLLECTION AND PROCESSING
EARTH REMOTE SENSING
HYDROLOGICAL POSTS
HYDROPOWER PLANT
INFLOW FORECASTING
METEOROLOGICAL POSTS
RESERVOIR
URI: http://elar.urfu.ru/handle/10995/131411
Условия доступа: info:eu-repo/semantics/openAccess
cc-by
Текст лицензии: https://creativecommons.org/licenses/by/4.0/
Идентификатор SCOPUS: 85146386677
Идентификатор WOS: 000904633900008
Идентификатор PURE: 33318864
1ad5bc75-bd93-41ae-a258-cb46bcdd0a48
ISSN: 1857-0070
DOI: 10.52254/1857-0070.2022.4-56.09
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85146386677.pdf670,55 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons