Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/131410
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMatrenin, P. V.en
dc.contributor.authorSafaraliev, M. K.en
dc.contributor.authorKiryanova, N. G.en
dc.contributor.authorSultonov, S. M.en
dc.date.accessioned2024-04-08T11:07:08Z-
dc.date.available2024-04-08T11:07:08Z-
dc.date.issued2022-
dc.identifier.citationMatrenin, PV, Safaraliev, MK, Kiryanova, NG & Sultonov, SM 2022, 'Прогнозирование среднемесячных значений стоков рек с применением необобщающей модели машинного обучения и преобразованием пространства признаков (на примере реки Вахш)', Problems of the Regional Energetics, № 3, стр. 99-110. https://doi.org/10.52254/1857-0070.2022.3-55.08harvard_pure
dc.identifier.citationMatrenin, P. V., Safaraliev, M. K., Kiryanova, N. G., & Sultonov, S. M. (2022). Прогнозирование среднемесячных значений стоков рек с применением необобщающей модели машинного обучения и преобразованием пространства признаков (на примере реки Вахш). Problems of the Regional Energetics, (3), 99-110. https://doi.org/10.52254/1857-0070.2022.3-55.08apa_pure
dc.identifier.issn1857-0070-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://doi.org/10.52254/1857-0070.2022.3-55.081
dc.identifier.otherhttps://doi.org/10.52254/1857-0070.2022.3-55.08pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/131410-
dc.description.abstractEnergy prices and сost of materials for solar and wind power plants have increased over the past year. Therefore, significance increases for the hydropower and long-term (1-10 years) planning generation for the existing hydropower plants, which requires forecasting the average monthly values of the river flow. This task is especially urgent for countries without their own oil-fields and opportunity to invest in the creation of solar or wind power plants. The aim of the research is to decrease the mean absolute forecasting error of the long-term prediction for the Vakhsh River flow (Tajikistan) based on the long-term observations. A study of existing methods for the river runoff forecasting in relation to the object under consideration was carried out, and a new transformation model for the space of the input features was developed. The most significant results are the decrease in the average forecast error in the Vakhsh river flow achieved by the use of the proposed space of polynomial logarithmic features in comparison with other methods, and the need to use at least the 20 year-old observational data for the long-term operation planning of the hydropower plants and cascades of the hydropower plants obtained from the results of computational experiments. The significance of the results lies in the fact that a new approach to the long-term forecasting of river flow has been proposed and verified using the long-term observations. This approach does not require the use of the long-term meteorological forecasts, which are not possible to obtain with high accuracy for all regions. © 2022 Problems of the Regional Energetics. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherInstitute of Power Engineeringen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceProblems of the Regional Energetics2
dc.sourceProblems of the Regional Energeticsen
dc.subjectCASCADE OF HYDROPOWER PLANTSen
dc.subjectGENERATION PLANNINGen
dc.subjectHYDROPOWERen
dc.subjectLONG-TERM FORECASTINGen
dc.subjectMACHINE LEARNINGen
dc.subjectREPUBLIC OF TAJIKISTANen
dc.subjectRIVER FLOWen
dc.titleMonthly Runoff Forecasting by Non-Generalizing Machine Learning Model and Feature Space Transformation (Vakhsh River Case Study)en
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.52254/1857-0070.2022.3-55.08-
dc.identifier.scopus85138811938-
local.contributor.employeeMatrenin P.V., Novosibirsk State Technical University, Novosibirsk, Russian Federationen
local.contributor.employeeSafaraliev M.K., Ural Federal University, Yekaterinburg, Russian Federationen
local.contributor.employeeKiryanova N.G., Novosibirsk State Technical University, Novosibirsk, Russian Federationen
local.contributor.employeeSultonov S.M., Tajik Technical University, Dushanbe, Tajikistanen
local.description.firstpage99-
local.description.lastpage110-
local.issue3-
dc.identifier.wos000892787700012-
local.contributor.departmentNovosibirsk State Technical University, Novosibirsk, Russian Federationen
local.contributor.departmentUral Federal University, Yekaterinburg, Russian Federationen
local.contributor.departmentTajik Technical University, Dushanbe, Tajikistanen
local.identifier.pure30980410-
local.identifier.pure81332e95-f5cb-45b7-bc68-24c9d84f0749uuid
local.identifier.eid2-s2.0-85138811938-
local.identifier.wosWOS:000892787700012-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85138811938.pdf1,03 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons