Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131285
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorToropova, L. V.en
dc.contributor.authorRettenmayr, M.en
dc.contributor.authorGalenko, P. K.en
dc.contributor.authorAlexandrov, D. V.en
dc.date.accessioned2024-04-08T11:06:10Z-
dc.date.available2024-04-08T11:06:10Z-
dc.date.issued2022-
dc.identifier.citationToropova, LV, Rettenmayr, M, Galenko, PK & Alexandrov, DV 2022, 'Mathematical modeling of dendrite growth in an Al–Ge alloy with convective flow', Mathematical Methods in the Applied Sciences, Том. 45, № 13, стр. 8069-8081. https://doi.org/10.1002/mma.7991harvard_pure
dc.identifier.citationToropova, L. V., Rettenmayr, M., Galenko, P. K., & Alexandrov, D. V. (2022). Mathematical modeling of dendrite growth in an Al–Ge alloy with convective flow. Mathematical Methods in the Applied Sciences, 45(13), 8069-8081. https://doi.org/10.1002/mma.7991apa_pure
dc.identifier.issn0170-4214-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Green Open Access; Hybrid Gold Open Access3
dc.identifier.otherhttps://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mma.79911
dc.identifier.otherhttps://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mma.7991pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/131285-
dc.description.abstractA theory of stable dendrite growth in an undercooled binary melt is developed for the case of intense convection. Conductive heat and mass transfer boundary conditions are replaced by convective conditions, where the flux of heat (or solute) is proportional to the temperature or concentration difference between the surface of the dendrite and far from it. The marginal mode of perturbation wavelengths is calculated using the linear morphological stability analysis. Combining this analysis with the solvability theory, we have derived a selection criterion that represents the first condition to define a combination of dendrite tip velocity and tip diameter. The second condition—the undercooling balance—is derived for intense convection. The theory under consideration determines the dendrite tip velocity and tip diameter for low undercooling. This convective theory is combined with the classical theory of dendritic growth (conductive boundary conditions), which is valid for moderate and high undercooling. Thus, the entire range of melt undercooling is covered. Our results are in good agreement with experiments on Al–Ge crystallization. © 2021 The Authors. Mathematical Methods in the Applied Sciences published by John Wiley & Sons Ltd.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnauka, (075‐02‐2021‐1387)en
dc.description.sponsorshipRussian Science Foundation, RSF, (21‐19‐00279)en
dc.description.sponsorshipFoundation for the Advancement of Theoretical Physics and Mathematics, (21‐1‐3‐11‐1)en
dc.description.sponsorshipL.V.T. acknowledges financial support from the Ministry of Science and Higher Education of the Russian Federation (project 075‐02‐2021‐1387 for the development of the regional scientific and educational mathematical center “Ural Mathematical Center”) for the linear stability analysis. Moreover, she is grateful to the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” (project No. 21‐1‐3‐11‐1) for the development of solvability theory. P.K.G. and D.V.A. acknowledge the Russian Science Foundation (Project No. 21‐19‐00279) for the stitching of selection criteria, computer simulations, and comparison with experimental data. Open Access funding enabled and organized by Projekt DEAL.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherJohn Wiley and Sons Ltden
dc.relationinfo:eu-repo/grantAgreement/RSF//21-19-00279en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-by-ncother
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/unpaywall
dc.sourceMathematical Methods in the Applied Sciences2
dc.sourceMathematical Methods in the Applied Sciencesen
dc.subjectCRYSTAL ANISOTROPYen
dc.subjectDENDRITESen
dc.subjectFORCED CONVECTIONen
dc.subjectMATHEMATICAL MODELINGen
dc.subjectPHASE TRANSITIONen
dc.subjectSELECTION THEORYen
dc.subjectBOUNDARY CONDITIONSen
dc.subjectFORCED CONVECTIONen
dc.subjectLINEAR STABILITY ANALYSISen
dc.subjectMASS TRANSFERen
dc.subjectCONDITIONen
dc.subjectCONVECTIVE FLOWen
dc.subjectCRYSTAL ANISOTROPYen
dc.subjectDENDRITEen
dc.subjectDENDRITE GROWTHen
dc.subjectMATHEMATICAL METHODen
dc.subjectMATHEMATICAL MODELINGen
dc.subjectSELECTION THEORYen
dc.subjectTIP VELOCITYen
dc.subjectUNDERCOOLINGSen
dc.subjectUNDERCOOLINGen
dc.titleMathematical modeling of dendrite growth in an Al–Ge alloy with convective flowen
dc.typeConference paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1002/mma.7991-
dc.identifier.scopus85120781296-
local.contributor.employeeToropova L.V., Laboratory of Mathematical Modeling of Physical and Chemical Processes in Multiphase Media, Department of Theoretical and Mathematical Physics, Ural Federal University, Ekaterinburg, Russian Federation, Otto-Schott Institute for Materials Research, Friedrich Schiller University Jena, Jena, Germanyen
local.contributor.employeeRettenmayr M., Otto-Schott Institute for Materials Research, Friedrich Schiller University Jena, Jena, Germanyen
local.contributor.employeeGalenko P.K., Otto-Schott Institute for Materials Research, Friedrich Schiller University Jena, Jena, Germany, Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Ekaterinburg, Russian Federationen
local.contributor.employeeAlexandrov D.V., Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Ekaterinburg, Russian Federationen
local.description.firstpage8069-
local.description.lastpage8081-
local.issue13-
local.volume45-
dc.identifier.wos000728147900001-
local.contributor.departmentLaboratory of Mathematical Modeling of Physical and Chemical Processes in Multiphase Media, Department of Theoretical and Mathematical Physics, Ural Federal University, Ekaterinburg, Russian Federationen
local.contributor.departmentOtto-Schott Institute for Materials Research, Friedrich Schiller University Jena, Jena, Germanyen
local.contributor.departmentLaboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Ekaterinburg, Russian Federationen
local.identifier.pure30717882-
local.identifier.pure044a1ddb-d31d-44a9-8c59-f87f6b2306a5uuid
local.identifier.eid2-s2.0-85120781296-
local.fund.rsf21-19-00279-
local.identifier.wosWOS:000728147900001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85120781296.pdf2,28 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons