Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131183
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBhardwaj, M.en
dc.contributor.authorOsipov, A. V.en
dc.date.accessioned2024-04-08T11:05:36Z-
dc.date.available2024-04-08T11:05:36Z-
dc.date.issued2022-
dc.identifier.citationBhardwaj, M & Osipov, AV 2022, 'Some Observations on the Mildly Menger Property and Topological Games', Filomat, Том. 36, № 15, стр. 5289-5296. https://doi.org/10.2298/FIL2215289Bharvard_pure
dc.identifier.citationBhardwaj, M., & Osipov, A. V. (2022). Some Observations on the Mildly Menger Property and Topological Games. Filomat, 36(15), 5289-5296. https://doi.org/10.2298/FIL2215289Bapa_pure
dc.identifier.issn0354-5180-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Bronze Open Access; Green Open Access3
dc.identifier.otherhttp://www.doiserbia.nb.rs/ft.aspx?id=0354-51802215289B1
dc.identifier.otherhttp://www.doiserbia.nb.rs/ft.aspx?id=0354-51802215289Bpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/131183-
dc.description.abstractIn this paper, we defined two new games-the mildly Menger game and the compact-clopen game. In a zero-dimensional space, the Menger game is equivalent to the mildly Menger game and the compact-open game is equivalent to the compact-clopen game. An example is given for a space on which the mildly Menger game is undetermined. Also we introduced a new game namely K-quasi-componentclopen game and proved that this game is equivalent to the compact-clopen game. Then we proved that if a topological space is a union of countably many quasi-components of compact sets, then TWO has a winning strategy in the mildly Menger game. © 2022, University of Nis. All rights reserved.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnaukaen
dc.description.sponsorshipThe authors would like to thank the referee for careful reading and valuable comments. The research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherUniversity of Nisen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceFilomat2
dc.sourceFilomaten
dc.subjectCOMPACT-CLOPEN GAMEen
dc.subjectK-QUASI-COMPONENT-CLOPEN GAMEen
dc.subjectMENGER GAMEen
dc.subjectMENGER SPACEen
dc.subjectMILDLY MENGER GAMEen
dc.subjectMILDLY MENGER SPACEen
dc.subjectSELECTION PRINCIPLESen
dc.subjectZERO-DIMENSIONAL SPACEen
dc.titleSome Observations on the Mildly Menger Property and Topological Gamesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.2298/FIL2215289B-
dc.identifier.scopus85146285973-
local.contributor.employeeBhardwaj M., Department of Mathematics, University of Delhi, New Delhi, 110007, Indiaen
local.contributor.employeeOsipov A.V., Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ural State University of Economics, Yekaterinburg, Russian Federationen
local.description.firstpage5289-
local.description.lastpage5296-
local.issue15-
local.volume36-
dc.identifier.wos000906943600020-
local.contributor.departmentDepartment of Mathematics, University of Delhi, New Delhi, 110007, Indiaen
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ural State University of Economics, Yekaterinburg, Russian Federationen
local.identifier.pure33969787-
local.identifier.puredf7e89b2-9793-4a5d-a70f-1ca14c1e0ce5uuid
local.identifier.eid2-s2.0-85146285973-
local.identifier.wosWOS:000906943600020-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85146285973.pdf207,74 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.