Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/131093
Название: | APPROXIMATION OF DIFFERENTIATION OPERATORS BY BOUNDED LINEAR OPERATORS IN LEBESGUE SPACES ON THE AXIS AND RELATED PROBLEMS IN THE SPACES OF (p,q)-MULTIPLIERS AND THEIR PREDUAL SPACES |
Авторы: | Arestov, V. V. |
Дата публикации: | 2023 |
Издатель: | Krasovskii Institute of Mathematics and Mechanics |
Библиографическое описание: | Arestov, V 2023, 'APPROXIMATION OF DIFFERENTIATION OPERATORS BY BOUNDED LINEAR OPERATORS IN LEBESGUE SPACES ON THE AXIS AND RELATED PROBLEMS IN THE SPACES OF \((p,q)\)-MULTIPLIERS AND THEIR PREDUAL SPACES', Ural Mathematical Journal, Том. 9, № 2, стр. 4-27. https://doi.org/10.15826/umj.2023.2.001 Arestov, V. (2023). APPROXIMATION OF DIFFERENTIATION OPERATORS BY BOUNDED LINEAR OPERATORS IN LEBESGUE SPACES ON THE AXIS AND RELATED PROBLEMS IN THE SPACES OF \((p,q)\)-MULTIPLIERS AND THEIR PREDUAL SPACES. Ural Mathematical Journal, 9(2), 4-27. https://doi.org/10.15826/umj.2023.2.001 |
Аннотация: | We consider a variant En,k (N; r, r; p, p) of the four-parameter Stechkin problem En,k (N; r, s; p, q) on the best approximation of differentiation operators of order k on the class of n times differentiable functions (0 < k < n) in Lebesgue spaces on the real axis. We discuss the state of research in this problem and related problems in the spaces of multipliers of Lebesgue spaces and their predual spaces. We give two-sided estimates for En,k (N; r, r; p, p). The paper is based on the author’s talk at the S.B.Stechkin’s International Workshop-Conference on Function Theory (Kyshtym, Chelyabinsk region, August 1–10, 2023). © 2023, Krasovskii Institute of Mathematics and Mechanics. All rights reserved. |
Ключевые слова: | (P, Q)-MULTIPLIER DIFFERENTIATION OPERATOR KOLMOGOROV INEQUALITY PREDUAL SPACE FOR THE SPACE OF (P, Q)-MULTIPLIERS STECHKIN’S PROBLEM |
URI: | http://elar.urfu.ru/handle/10995/131093 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
Идентификатор РИНЦ: | 59690638 |
Идентификатор SCOPUS: | 85180912425 |
Идентификатор PURE: | 50639537 |
ISSN: | 2414-3952 |
DOI: | 10.15826/umj.2023.2.001 |
Сведения о поддержке: | Russian Science Foundation, RSF: 22-21-00526 1This work was supported by the Russian Science Foundation, https://rscf.ru/project/22-21-00526/ . 1This work was supported by the Russian Science Foundation, project no. 22-21-00526, https://rscf.ru/project/22-21-00526/. |
Карточка проекта РНФ: | 22-21-00526 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85180912425.pdf | 338,71 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons