Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131073
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorDordiuk, V.en
dc.contributor.authorDzhigil, M.en
dc.contributor.authorUshenin, K.en
dc.date.accessioned2024-04-05T16:38:14Z-
dc.date.available2024-04-05T16:38:14Z-
dc.date.issued2023-
dc.identifier.citationDordiuk, V, Dzhigil, M & Ushenin, K 2023, Benefits of Mirror Weight Symmetry for 3D Mesh Segmentation in Biomedical Applications. в 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine, CSGB 2023 - Proceedings: book. Institute of Electrical and Electronics Engineers Inc., стр. 100-107, 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB), 28/09/2023. https://doi.org/10.1109/CSGB60362.2023.10329838harvard_pure
dc.identifier.citationDordiuk, V., Dzhigil, M., & Ushenin, K. (2023). Benefits of Mirror Weight Symmetry for 3D Mesh Segmentation in Biomedical Applications. в 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine, CSGB 2023 - Proceedings: book (стр. 100-107). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CSGB60362.2023.10329838apa_pure
dc.identifier.isbn9798350307979-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85180377048&doi=10.1109%2fCSGB60362.2023.10329838&partnerID=40&md5=66ad56216256930400f994c8fa9007e01
dc.identifier.otherhttps://arxiv.org/pdf/2309.17076pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/131073-
dc.description.abstract3D mesh segmentation is an important task with many biomedical applications. The human body has bilateral symmetry and some variations in organ positions. It allows us to expect a positive effect of rotation and inversion invariant layers in convolutional neural networks that perform biomedical segmentations. In this study, we show the impact of weight symmetry in neural networks that perform 3D mesh segmentation. We analyze the problem of 3D mesh segmentation for pathological vessel structures (aneurysms) and conventional anatomical structures (endocardium and epicardium of ventricles). Local geometrical features are encoded as sampling from the signed distance function, and the neural network performs prediction for each mesh node. We show that weight symmetry gains from 1 to 3% of additional accuracy and allows decreasing the number of trainable parameters up to 8 times without suffering the performance loss if neural networks have at least three convolutional layers. This also works for very small training sets. © 2023 IEEE.en
dc.description.sponsorshipRussian Science Foundation, RSF: RSF 22-21-00930en
dc.description.sponsorshipThis work has been supported by the grant of the Russian Science Foundation, RSF 22-21-00930. The computations were performed on the Uran supercomputer at the IMM UB RAS.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en
dc.relationinfo:eu-repo/grantAgreement/RSF//22-21-00930en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.source2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB)2
dc.source2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine, CSGB 2023 - Proceedingsen
dc.subject3D MESH SEGMENTATIONen
dc.subjectBIOMEDICAL SEGMENTATIONen
dc.subjectHARD CONSTRAINTSen
dc.subjectINVERSION INVARIANTen
dc.subjectROTATION INVARIANTen
dc.subjectSYMMETRY IN NEURAL NETWORKSen
dc.subjectWEIGHT SYMMETRYen
dc.subjectCONVOLUTIONen
dc.subjectCONVOLUTIONAL NEURAL NETWORKSen
dc.subjectHEARTen
dc.subjectMEDICAL APPLICATIONSen
dc.subjectMULTILAYER NEURAL NETWORKSen
dc.subject3D MESH SEGMENTATIONen
dc.subject3D MESHESen
dc.subjectBIOMEDICAL SEGMENTATIONen
dc.subjectHARD CONSTRAINTSen
dc.subjectINVERSION INVARIANTen
dc.subjectMESH SEGMENTATIONen
dc.subjectNEURAL-NETWORKSen
dc.subjectROTATION INVARIANTen
dc.subjectSYMMETRY IN NEURAL NETWORKen
dc.subjectWEIGHT SYMMETRYen
dc.subjectMESH GENERATIONen
dc.titleBenefits of Mirror Weight Symmetry for 3D Mesh Segmentation in Biomedical Applicationsen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.conference.name2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine, CSGB 2023en
dc.conference.date28 September 2023 through 29 September 2023-
dc.identifier.doi10.1109/CSGB60362.2023.10329838-
dc.identifier.scopus85180377048-
local.contributor.employeeDordiuk, V., Ural Federal University, Institute of Immunology and Physiology, Ekaterinburg, Russian Federationen
local.contributor.employeeDzhigil, M., Ural Federal University, Institute of Immunology and Physiology, Ekaterinburg, Russian Federationen
local.contributor.employeeUshenin, K., Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federationen
local.description.firstpage100-
local.description.lastpage107-
local.contributor.departmentUral Federal University, Institute of Immunology and Physiology, Ekaterinburg, Russian Federationen
local.contributor.departmentInstitute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federationen
local.identifier.pure50627272-
local.identifier.eid2-s2.0-85180377048-
local.fund.rsf22-21-00930-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85180377048.pdf10,77 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.