Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/131073
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Dordiuk, V. | en |
dc.contributor.author | Dzhigil, M. | en |
dc.contributor.author | Ushenin, K. | en |
dc.date.accessioned | 2024-04-05T16:38:14Z | - |
dc.date.available | 2024-04-05T16:38:14Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Dordiuk, V, Dzhigil, M & Ushenin, K 2023, Benefits of Mirror Weight Symmetry for 3D Mesh Segmentation in Biomedical Applications. в 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine, CSGB 2023 - Proceedings: book. Institute of Electrical and Electronics Engineers Inc., стр. 100-107, 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB), 28/09/2023. https://doi.org/10.1109/CSGB60362.2023.10329838 | harvard_pure |
dc.identifier.citation | Dordiuk, V., Dzhigil, M., & Ushenin, K. (2023). Benefits of Mirror Weight Symmetry for 3D Mesh Segmentation in Biomedical Applications. в 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine, CSGB 2023 - Proceedings: book (стр. 100-107). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CSGB60362.2023.10329838 | apa_pure |
dc.identifier.isbn | 9798350307979 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180377048&doi=10.1109%2fCSGB60362.2023.10329838&partnerID=40&md5=66ad56216256930400f994c8fa9007e0 | 1 |
dc.identifier.other | https://arxiv.org/pdf/2309.17076 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/131073 | - |
dc.description.abstract | 3D mesh segmentation is an important task with many biomedical applications. The human body has bilateral symmetry and some variations in organ positions. It allows us to expect a positive effect of rotation and inversion invariant layers in convolutional neural networks that perform biomedical segmentations. In this study, we show the impact of weight symmetry in neural networks that perform 3D mesh segmentation. We analyze the problem of 3D mesh segmentation for pathological vessel structures (aneurysms) and conventional anatomical structures (endocardium and epicardium of ventricles). Local geometrical features are encoded as sampling from the signed distance function, and the neural network performs prediction for each mesh node. We show that weight symmetry gains from 1 to 3% of additional accuracy and allows decreasing the number of trainable parameters up to 8 times without suffering the performance loss if neural networks have at least three convolutional layers. This also works for very small training sets. © 2023 IEEE. | en |
dc.description.sponsorship | Russian Science Foundation, RSF: RSF 22-21-00930 | en |
dc.description.sponsorship | This work has been supported by the grant of the Russian Science Foundation, RSF 22-21-00930. The computations were performed on the Uran supercomputer at the IMM UB RAS. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en |
dc.relation | info:eu-repo/grantAgreement/RSF//22-21-00930 | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB) | 2 |
dc.source | 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine, CSGB 2023 - Proceedings | en |
dc.subject | 3D MESH SEGMENTATION | en |
dc.subject | BIOMEDICAL SEGMENTATION | en |
dc.subject | HARD CONSTRAINTS | en |
dc.subject | INVERSION INVARIANT | en |
dc.subject | ROTATION INVARIANT | en |
dc.subject | SYMMETRY IN NEURAL NETWORKS | en |
dc.subject | WEIGHT SYMMETRY | en |
dc.subject | CONVOLUTION | en |
dc.subject | CONVOLUTIONAL NEURAL NETWORKS | en |
dc.subject | HEART | en |
dc.subject | MEDICAL APPLICATIONS | en |
dc.subject | MULTILAYER NEURAL NETWORKS | en |
dc.subject | 3D MESH SEGMENTATION | en |
dc.subject | 3D MESHES | en |
dc.subject | BIOMEDICAL SEGMENTATION | en |
dc.subject | HARD CONSTRAINTS | en |
dc.subject | INVERSION INVARIANT | en |
dc.subject | MESH SEGMENTATION | en |
dc.subject | NEURAL-NETWORKS | en |
dc.subject | ROTATION INVARIANT | en |
dc.subject | SYMMETRY IN NEURAL NETWORK | en |
dc.subject | WEIGHT SYMMETRY | en |
dc.subject | MESH GENERATION | en |
dc.title | Benefits of Mirror Weight Symmetry for 3D Mesh Segmentation in Biomedical Applications | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/submittedVersion | en |
dc.conference.name | 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine, CSGB 2023 | en |
dc.conference.date | 28 September 2023 through 29 September 2023 | - |
dc.identifier.doi | 10.1109/CSGB60362.2023.10329838 | - |
dc.identifier.scopus | 85180377048 | - |
local.contributor.employee | Dordiuk, V., Ural Federal University, Institute of Immunology and Physiology, Ekaterinburg, Russian Federation | en |
local.contributor.employee | Dzhigil, M., Ural Federal University, Institute of Immunology and Physiology, Ekaterinburg, Russian Federation | en |
local.contributor.employee | Ushenin, K., Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation | en |
local.description.firstpage | 100 | - |
local.description.lastpage | 107 | - |
local.contributor.department | Ural Federal University, Institute of Immunology and Physiology, Ekaterinburg, Russian Federation | en |
local.contributor.department | Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation | en |
local.identifier.pure | 50627272 | - |
local.identifier.eid | 2-s2.0-85180377048 | - |
local.fund.rsf | 22-21-00930 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85180377048.pdf | 10,77 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.