Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/131072
Название: | Compressor-Based Classification for Atrial Fibrillation Detection |
Авторы: | Markov, N. Ushenin, K. Bozhko, Y. Solovyova, O. |
Дата публикации: | 2023 |
Издатель: | Institute of Electrical and Electronics Engineers Inc. |
Библиографическое описание: | Markov, N, Ushenin, K, Bozhko, Y & Solovyova, O 2023, Compressor-Based Classification for Atrial Fibrillation Detection. в 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine, CSGB 2023 - Proceedings: book. Institute of Electrical and Electronics Engineers Inc., стр. 122-127, 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB), 28/09/2023. https://doi.org/10.1109/CSGB60362.2023.10329826 Markov, N., Ushenin, K., Bozhko, Y., & Solovyova, O. (2023). Compressor-Based Classification for Atrial Fibrillation Detection. в 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine, CSGB 2023 - Proceedings: book (стр. 122-127). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CSGB60362.2023.10329826 |
Аннотация: | Atrial fibrillation (AF) is one of the most common arrhythmias with challenging public health implications. Therefore, automatic detection of AF episodes on ECG is one of the essential tasks in biomedical engineering. In this paper, we applied the recently introduced method of compressor-based text classification with gzip algorithm for AF detection (binary classification between heart rhythms). We investigated the normalized compression distance applied to RR-interval and ΔRR-interval sequences (ΔRR-interval is the difference between subsequent RR-intervals). Here, the configuration of the k-nearest neighbour classifier, an optimal window length, and the choice of data types for compression were analyzed. We achieved good classification results while learning on the full MIT-BIH Atrial Fibrillation database, close to the best specialized AF detection algorithms (avg. sensitivity = 97.1%, avg. specificity = 91.7%, best sensitivity of 99.8%, best specificity of 97.6% with fivefold cross-validation). In addition, we evaluated the classification performance under the few-shot learning setting. Our results suggest that gzip compression-based classification, originally proposed for texts, is suitable for biomedical data and quantized continuous stochastic sequences in general. © 2023 IEEE. |
Ключевые слова: | ATRIAL FIBRILLATION ECG GZIP NORMALIZED COMPRESSION DISTANCE BIOMEDICAL ENGINEERING CLASSIFICATION (OF INFORMATION) COMPRESSORS DISEASES NEAREST NEIGHBOR SEARCH STOCHASTIC SYSTEMS TEXT PROCESSING ATRIAL FIBRILLATION AUTOMATIC DETECTION BINARY CLASSIFICATION GZIP HEALTH IMPLICATIONS INTERVAL SEQUENCES K-NEAREST NEIGHBORS CLASSIFIERS NORMALIZED COMPRESSION DISTANCE RR INTERVALS TEXT CLASSIFICATION ELECTROCARDIOGRAMS |
URI: | http://elar.urfu.ru/handle/10995/131072 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Конференция/семинар: | 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine, CSGB 2023 |
Дата конференции/семинара: | 28 September 2023 through 29 September 2023 |
Идентификатор SCOPUS: | 85180368595 |
Идентификатор PURE: | 50627945 |
ISBN: | 9798350307979 |
DOI: | 10.1109/CSGB60362.2023.10329826 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85180368595.pdf | 902,56 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.