Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131030
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorPaswan, K.en
dc.contributor.authorSharma, S.en
dc.contributor.authorLi, C.en
dc.contributor.authorMohammed, K. A.en
dc.contributor.authorKumar, A.en
dc.contributor.authorAbbas, M.en
dc.contributor.authorTag-Eldin, E. M.en
dc.date.accessioned2024-04-05T16:37:21Z-
dc.date.available2024-04-05T16:37:21Z-
dc.date.issued2023-
dc.identifier.citationPaswan, K, Sharma, S, Li, C, Mohammed, KA, Kumar, A, Abbas, M & Tag-Eldin, EM 2023, 'Unravelling the analysis of electrical discharge machining process parameters, microstructural morphology, surface integrity, recast layer formation, and material properties: A comparative study of aluminum, brass, and Inconel 617 materials', Journal of Materials Research and Technology, Том. 27, стр. 7713-7729. https://doi.org/10.1016/j.jmrt.2023.11.186harvard_pure
dc.identifier.citationPaswan, K., Sharma, S., Li, C., Mohammed, K. A., Kumar, A., Abbas, M., & Tag-Eldin, E. M. (2023). Unravelling the analysis of electrical discharge machining process parameters, microstructural morphology, surface integrity, recast layer formation, and material properties: A comparative study of aluminum, brass, and Inconel 617 materials. Journal of Materials Research and Technology, 27, 7713-7729. https://doi.org/10.1016/j.jmrt.2023.11.186apa_pure
dc.identifier.issn2238-7854-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85178997849&doi=10.1016%2fj.jmrt.2023.11.186&partnerID=40&md5=3ab69cd53d246e9eea2e23288fe91c611
dc.identifier.otherhttps://doi.org/10.1016/j.jmrt.2023.11.186pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/131030-
dc.description.abstractInadequate research regarding how material characteristics affect vital yield parameters in EDM, particularly for aluminium, brass, and Inconel 617. An limited study has examined how EDM process parameters like peak current (Ip), gap voltage, and pulse on time (Ton) affect recast layer thickness, tool wear rate, surface roughness, crack density, globule formation, material removal rate, and crater formation. The interaction between thermal conductivity, microcracks, and recast layers in EDM is uncertain. Material characteristics' implications on XRD patterns and globule formation during EDM machining were not extensively investigated. EDM process parameters and their impacts on response variables such tool wear rate (TWR), material removal rate (MRR), surface roughness, and globule formation for diverse materials have received minimal analysis. In addition, non-ferrous workpiece materials are integral to the electrical discharge machining process. This study delves into how the physical properties of materials influence key yield parameters, including tool wear rate, surface roughness, crack density, globules, material removal rate, and crater formation. The investigation covers Inconel 617, brass, and aluminum, revealing peak current (Ip) as the most influential factor for highly thermally conductive materials when compared to gap voltage and pulse on time (Ton). Notably, Inconel 617 exhibits longer cracks, while aluminum displays smaller ones, and deeper cracks are found on the surface of aluminum, contrasting with the broader craters observed on Inconel 617. Recast layer thickness varies, ranging from 8.3 μm for brass to 13.8 μm for aluminum. The study validates response values extensively against experimental data and highlights brass's superior surface finish. It further uncovers that plasma-generated craters are predominantly semispherical, with the plasma's diameter expanding faster than the crater's size. Sub-surface re-solidification emerges as a source of stress and micro-cracks, which diminish material's fatigue strength. Notably, aluminum exhibits a greater number of elegant microcracks on the machined surface, while brass and Inconel 617 have fewer. Recast layer thickness measurements indicate approximately 13.8 μm for aluminum, 8.3 μm for brass, and 9 μm for Inconel 617. Additionally, the thermal erosion process enhances the microhardness of the machining zone's subsurface due to the formation of oxides and carbides and the re-solidification of particles. Different material characteristics are revealed through X-ray diffraction (XRD) patterns, while globules, small and spherical, weakly adhere to the machining zone's subsurface. In particular, aluminum machined surfaces feature fewer globules, while brass surfaces exhibit a higher quantity, attributed to their varying thermal conductivity. © 2023 The Authorsen
dc.description.sponsorshipKhon Kaen University, KKU: R.G.P.2/283/44; Deanship of Scientific Research, King Khalid Universityen
dc.description.sponsorshipThe authors extend their appreciation to the Deanship of Scientific Research at King Khalid University (KKU) for funding this research through the Research Group Program Under the Grant Number:( R.G.P.2/283/44 ).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier Editora Ltdaen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceJournal of Materials Research and Technology2
dc.sourceJournal of Materials Research and Technologyen
dc.subjectEDMen
dc.subjectGLOBULARen
dc.subjectMATERIAL PROPERTIESen
dc.subjectMICROCRACKSen
dc.subjectMRRen
dc.subjectRECAST LAYERen
dc.subjectBRASSen
dc.subjectCONDUCTIVE MATERIALSen
dc.subjectCUTTING TOOLSen
dc.subjectELECTRIC DISCHARGE MACHININGen
dc.subjectELECTRIC DISCHARGESen
dc.subjectMACHINING CENTERSen
dc.subjectMICROCRACKSen
dc.subjectMORPHOLOGYen
dc.subjectSURFACE ROUGHNESSen
dc.subjectTHERMAL CONDUCTIVITYen
dc.subjectTHICKNESS MEASUREMENTen
dc.subjectWEAR OF MATERIALSen
dc.subjectALUMINUM BRASSen
dc.subjectEDMen
dc.subjectELECTRICAL DISCHARGE MACHINING PROCESSen
dc.subjectGLOBULARen
dc.subjectINCONEL 617en
dc.subjectLAYER THICKNESSen
dc.subjectMATERIAL CHARACTERISTICSen
dc.subjectMATERIAL REMOVAL RATEen
dc.subjectRECAST LAYERen
dc.subjectTOOL WEAR RATEen
dc.subjectALUMINUMen
dc.titleUnravelling the analysis of electrical discharge machining process parameters, microstructural morphology, surface integrity, recast layer formation, and material properties: A comparative study of aluminum, brass, and Inconel 617 materialsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.jmrt.2023.11.186-
dc.identifier.scopus85178997849-
local.contributor.employeePaswan, K., Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Indiaen
local.contributor.employeeSharma, S., Mechanical Engineering Department, University Centre for Research and Development, Chandigarh University, Punjab, Mohali, 140413, India, School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, 266520, China, Department of Mechanical Engineering, Lebanese American University, Kraytem, Beirut, 1102-2801, Lebanonen
local.contributor.employeeLi, C., School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, 266520, Chinaen
local.contributor.employeeMohammed, K.A., Faculty of Pharmacy, Jabir Ibn Hayyan Medical University, Najaf, Iraq, Department of Medical Physics, Hilla University College, Babylon, Iraqen
local.contributor.employeeKumar, A., Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia, Boris Yeltsin, 19 Mira Street, Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeAbbas, M., Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabiaen
local.contributor.employeeTag-Eldin, E.M., Faculty of Engineering, Future University in Egypt, Cairo, 11835, Egypten
local.description.firstpage7713-
local.description.lastpage7729-
local.volume27-
local.contributor.departmentDepartment of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Indiaen
local.contributor.departmentMechanical Engineering Department, University Centre for Research and Development, Chandigarh University, Punjab, Mohali, 140413, Indiaen
local.contributor.departmentSchool of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, 266520, Chinaen
local.contributor.departmentDepartment of Mechanical Engineering, Lebanese American University, Kraytem, Beirut, 1102-2801, Lebanonen
local.contributor.departmentFaculty of Pharmacy, Jabir Ibn Hayyan Medical University, Najaf, Iraqen
local.contributor.departmentDepartment of Medical Physics, Hilla University College, Babylon, Iraqen
local.contributor.departmentDepartment of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia, Boris Yeltsin, 19 Mira Street, Ekaterinburg, 620002, Russian Federationen
local.contributor.departmentElectrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabiaen
local.contributor.departmentFaculty of Engineering, Future University in Egypt, Cairo, 11835, Egypten
local.identifier.pure49832395-
local.identifier.eid2-s2.0-85178997849-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85178997849.pdf13,39 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons