Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130999
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorSenyuk, M.en
dc.contributor.authorSafaraliev, M.en
dc.contributor.authorPazderin, A.en
dc.contributor.authorPichugova, O.en
dc.contributor.authorZicmane, I.en
dc.contributor.authorBeryozkina, S.en
dc.date.accessioned2024-04-05T16:36:57Z-
dc.date.available2024-04-05T16:36:57Z-
dc.date.issued2023-
dc.identifier.citationSenyuk, M, Safaraliev, M, Pazderin, A, Pichugova, O, Zicmane, I & Beryozkina, S 2023, 'Methodology for Power Systems’ Emergency Control Based on Deep Learning and Synchronized Measurements', Mathematics, Том. 11, № 22, стр. 4667. https://doi.org/10.3390/math11224667harvard_pure
dc.identifier.citationSenyuk, M., Safaraliev, M., Pazderin, A., Pichugova, O., Zicmane, I., & Beryozkina, S. (2023). Methodology for Power Systems’ Emergency Control Based on Deep Learning and Synchronized Measurements. Mathematics, 11(22), 4667. https://doi.org/10.3390/math11224667apa_pure
dc.identifier.issn2227-7390-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85178107420&doi=10.3390%2fmath11224667&partnerID=40&md5=8bc73475b69b4db33432cb78a9114ce21
dc.identifier.otherhttps://www.mdpi.com/2227-7390/11/22/4667/pdf?version=1700134491pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130999-
dc.description.abstractModern electrical power systems place special demands on the speed and accuracy of transient and steady-state process control. The introduction of renewable energy sources has significantly influenced the amount of inertia and uncertainty of transient processes occurring in energy systems. These changes have led to the need to clarify the existing principles for the implementation of devices for protecting power systems from the loss of small-signal and transient stability. Traditional methods of developing these devices do not provide the required adaptability due to the need to specify a list of accidents to be considered. Therefore, there is a clear need to develop fundamentally new devices for the emergency control of power system modes based on adaptive algorithms. This work proposes to develop emergency control methods based on the use of deep machine learning algorithms and obtained data from synchronized vector measurement devices. This approach makes it possible to ensure adaptability and high performance when choosing control actions. Recurrent neural networks, long short-term memory networks, restricted Boltzmann machines, and self-organizing maps were selected as deep learning algorithms. Testing was performed by using IEEE14, IEEE24, and IEEE39 power system models. Two data samples were considered: with and without data from synchronized vector measurement devices. The highest accuracy of classification of the control actions’ value corresponds to the long short-term memory networks algorithm: the value of the accuracy factor was 94.31% without taking into account the data from the synchronized vector measurement devices and 94.45% when considering this data. The obtained results confirm the possibility of using deep learning algorithms to build an adaptive emergency control system for power systems. © 2023 by the authors.en
dc.description.sponsorshipRussian Science Foundation, RSF: 23-79-01024en
dc.description.sponsorshipThe reported study was supported by Russian Science Foundation, research project № 23-79-01024.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.relationinfo:eu-repo/grantAgreement/RSF//23-79-01024en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceMathematics2
dc.sourceMathematicsen
dc.subjectBIG DATAen
dc.subjectEMERGENCY CONTROLen
dc.subjectMACHINE LEARNINGen
dc.subjectPHASOR MEASUREMENT UNITSen
dc.subjectPOWER SYSTEMen
dc.subjectSMALL-SIGNAL STABILITYen
dc.subjectSYNCHRONOUS GENERATORen
dc.subjectTRANSIENT STABILITYen
dc.titleMethodology for Power Systems’ Emergency Control Based on Deep Learning and Synchronized Measurementsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/math11224667-
dc.identifier.scopus85178107420-
local.contributor.employeeSenyuk, M., Department of Automated Electrical Systems, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeSafaraliev, M., Department of Automated Electrical Systems, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeePazderin, A., Department of Automated Electrical Systems, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeePichugova, O., Department of Automated Electrical Systems, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeZicmane, I., Faculty of Electrical and Environmental Engineering, Riga Technical University, Riga, 1048, Latviaen
local.contributor.employeeBeryozkina, S., College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwaiten
local.issue22-
local.volume11-
dc.identifier.wos001118102500001-
local.contributor.departmentDepartment of Automated Electrical Systems, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentFaculty of Electrical and Environmental Engineering, Riga Technical University, Riga, 1048, Latviaen
local.contributor.departmentCollege of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwaiten
local.identifier.pure49263525-
local.description.order4667-
local.identifier.eid2-s2.0-85178107420-
local.fund.rsf23-79-01024-
local.identifier.wosWOS:001118102500001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85178107420.pdf2,94 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons