Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/130995
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJabborov, A.en
dc.contributor.authorKharlamova, A.en
dc.contributor.authorKholmatova, Z.en
dc.contributor.authorKruglov, A.en
dc.contributor.authorKruglov, V.en
dc.contributor.authorSucci, G.en
dc.date.accessioned2024-04-05T16:36:54Z-
dc.date.available2024-04-05T16:36:54Z-
dc.date.issued2023-
dc.identifier.citationJabborov, A, Kharlamova, A, Kholmatova, Z, Kruglov, A, Kruglov, V & Succi, G 2023, 'Taxonomy of Quality Assessment for Intelligent Software Systems: A Systematic Literature Review', IEEE Access, Том. 11, стр. 130491-130507. https://doi.org/10.1109/ACCESS.2023.3333920harvard_pure
dc.identifier.citationJabborov, A., Kharlamova, A., Kholmatova, Z., Kruglov, A., Kruglov, V., & Succi, G. (2023). Taxonomy of Quality Assessment for Intelligent Software Systems: A Systematic Literature Review. IEEE Access, 11, 130491-130507. https://doi.org/10.1109/ACCESS.2023.3333920apa_pure
dc.identifier.issn2169-3536-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85178066293&doi=10.1109%2fACCESS.2023.3333920&partnerID=40&md5=560bfd8597208116a9c9f6f5d41d4ef01
dc.identifier.otherhttps://ieeexplore.ieee.org/ielx7/6287639/6514899/10320363.pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130995-
dc.description.abstractThe increasing integration of AI software into various aspects of our daily lives has amplified the importance of evaluating the quality of these intelligent systems. The rapid proliferation of AI-based software projects and the growing reliance on these systems underscore the urgency of examining their quality for practical applications in both industry and academia. This systematic literature review delves into the study of quality assessment metrics and methods for AI-based systems, pinpointing key attributes and properties of intelligent software projects that are crucial for determining their quality. Furthermore, a comprehensive analysis of this domain will enable researchers to devise novel methods and metrics for effectively and efficiently evaluating the quality of such systems. Despite its importance, this area of development is still relatively nascent and evolving. This paper presents a systematic review of the current state of the taxonomy of quality assessment for AI-based software. We analyzed 271 articles from six different sources that focused on the quality assessment of intelligent software systems. The primary objective of this work is to provide an overview of the field and consolidate knowledge, which will aid researchers in identifying additional areas for future research. Moreover, our findings reveal the necessity to establish remedial strategies and develop tools to automate the process of identifying appropriate actions in response to abnormal metric values. © 2013 IEEE.en
dc.description.sponsorshipRussian Science Foundation, RSF: 22-21-00494en
dc.description.sponsorshipThis work was supported by the Russian Science Foundation under Grant 22-21-00494.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en
dc.relationinfo:eu-repo/grantAgreement/RSF//22-21-00494en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-by-nc-ndother
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/unpaywall
dc.sourceIEEE Access2
dc.sourceIEEE Accessen
dc.subjectAI SYSTEM EVALUATIONen
dc.subjectAI-BASED SOFTWAREen
dc.subjectARTIFICIAL INTELLIGENCEen
dc.subjectFEATURE SELECTIONen
dc.subjectINTELLIGENT SYSTEMSen
dc.subjectMACHINE LEARNINGen
dc.subjectQUALITY ASSESSMENTen
dc.subjectQUALITY MODELSen
dc.subjectSOFTWARE ATTRIBUTESen
dc.subjectAPPLICATION PROGRAMSen
dc.subjectFEATURE SELECTIONen
dc.subjectLEARNING SYSTEMSen
dc.subjectQUALITY ASSURANCEen
dc.subjectQUALITY CONTROLen
dc.subjectTAXONOMIESen
dc.subjectAI SYSTEM EVALUATIONen
dc.subjectAI SYSTEMSen
dc.subjectAI-BASED SOFTWAREen
dc.subjectFEATURES SELECTIONen
dc.subjectMACHINE-LEARNINGen
dc.subjectMEASURABLE PROPERTYen
dc.subjectPROPERTYen
dc.subjectQUALITY ASSESSMENTen
dc.subjectQUALITY MODELINGen
dc.subjectSOFTWAREen
dc.subjectSOFTWARE ATTRIBUTEen
dc.subjectSOFTWARE MEASUREMENTen
dc.subjectSOFTWARE-SYSTEMSen
dc.subjectSYSTEM EVALUATIONen
dc.subjectSYSTEMATICen
dc.subjectVALIDATION TECHNIQUEen
dc.subjectINTELLIGENT SYSTEMSen
dc.titleTaxonomy of Quality Assessment for Intelligent Software Systems: A Systematic Literature Reviewen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1109/ACCESS.2023.3333920-
dc.identifier.scopus85178066293-
local.contributor.employeeJabborov, A., Innopolis University, Lab of Industrializing Software Production, Innopolis, 420500, Russian Federationen
local.contributor.employeeKharlamova, A., Innopolis University, Lab of Industrializing Software Production, Innopolis, 420500, Russian Federationen
local.contributor.employeeKholmatova, Z., Innopolis University, Lab of Industrializing Software Production, Innopolis, 420500, Russian Federationen
local.contributor.employeeKruglov, A., Innopolis University, Lab of Industrializing Software Production, Innopolis, 420500, Russian Federationen
local.contributor.employeeKruglov, V., Institute of Radioelectronics and Information Technology, Ural Federal University, Faculty of Information Technology and Automatics, Yekaterinburg, 620075, Russian Federationen
local.contributor.employeeSucci, G., University of Bologna, Department of Computer Science and Engineering, Bologna, 40126, Italyen
local.description.firstpage130491-
local.description.lastpage130507-
local.volume11-
dc.identifier.wos001115910300001-
local.contributor.departmentInnopolis University, Lab of Industrializing Software Production, Innopolis, 420500, Russian Federationen
local.contributor.departmentInstitute of Radioelectronics and Information Technology, Ural Federal University, Faculty of Information Technology and Automatics, Yekaterinburg, 620075, Russian Federationen
local.contributor.departmentUniversity of Bologna, Department of Computer Science and Engineering, Bologna, 40126, Italyen
local.identifier.pure49834427-
local.identifier.eid2-s2.0-85178066293-
local.fund.rsf22-21-00494-
local.identifier.wosWOS:001115910300001-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85178066293.pdf755,68 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons