Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130947
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKolinichenko, A.en
dc.contributor.authorBashkirtseva, I.en
dc.contributor.authorRyashko, L.en
dc.date.accessioned2024-04-05T16:36:19Z-
dc.date.available2024-04-05T16:36:19Z-
dc.date.issued2023-
dc.identifier.citationKolinichenko, A, Bashkirtseva, I & Ryashko, L 2023, 'Self-Organization in Randomly Forced Diffusion Systems: A Stochastic Sensitivity Technique', Mathematics, Том. 11, № 2, 451. https://doi.org/10.3390/math11020451harvard_pure
dc.identifier.citationKolinichenko, A., Bashkirtseva, I., & Ryashko, L. (2023). Self-Organization in Randomly Forced Diffusion Systems: A Stochastic Sensitivity Technique. Mathematics, 11(2), [451]. https://doi.org/10.3390/math11020451apa_pure
dc.identifier.issn2227-7390-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85146741941&doi=10.3390%2fmath11020451&partnerID=40&md5=8becd4b8b0cba5324d9a19cc3ed6cdc71
dc.identifier.otherhttps://www.mdpi.com/2227-7390/11/2/451/pdf?version=1674220442pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130947-
dc.description.abstractThe problem with the analysis of noise-induced transitions between patterns in distributed stochastic systems is considered. As a key model, we use the spatially extended dynamical “phytoplankton-herbivore” system with diffusion. We perform the parametric bifurcation analysis of this model and determine the Turing instability zone, where non-homogeneous patterns are generated by diffusion. The multistability of this deterministic model with the coexistence of several waveform pattern–attractors is found. We study how noise affects these non-homogeneous patterns and estimate the dispersion of random states using a new technique based on stochastic sensitivity function (SSF) analysis and the confidence domain method. To investigate the preferences in noise-induced transitions between patterns, we analyze and compare the results of this theoretical approach with the statistics extracted from the direct numerical simulation. © 2023 by the authors.en
dc.description.sponsorship075-02-2022-877; Ministry of Education and Science of the Russian Federation, Minobrnauka; Russian Science Foundation, RSF: N 21-11-00062en
dc.description.sponsorshipThe work of A.K. on the bifurcation analysis of the deterministic diffusion population model is supported by the Ministry of Science and Higher Education of the Russian Federation (Ural Mathematical Center project No. 075-02-2022-877). The work of A.K., I.B., and L.R. on the research and development of the stochastic sensitivity theory of pattern–attractors and their application to the study of noise-induced effects was supported by the Russian Science Foundation (N 21-11-00062).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen
dc.relationinfo:eu-repo/grantAgreement/RSF//21-11-00062en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceMathematics2
dc.sourceMathematicsen
dc.subjectDIFFUSION MODELen
dc.subjectNOISE-INDUCED TRANSITIONSen
dc.subjectPATTERNSen
dc.subjectRANDOM DISTURBANCESen
dc.subjectSELF-ORGANIZATIONen
dc.subjectSTOCHASTIC SENSITIVITYen
dc.titleSelf-Organization in Randomly Forced Diffusion Systems: A Stochastic Sensitivity Techniqueen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/math11020451-
dc.identifier.scopus85146741941-
local.contributor.employeeKolinichenko, A., Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeBashkirtseva, I., Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeRyashko, L., Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russian Federationen
local.issue2-
local.volume11-
dc.identifier.wos000918737200001-
local.contributor.departmentInstitute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russian Federationen
local.identifier.pure33968995-
local.description.order451-
local.identifier.eid2-s2.0-85146741941-
local.fund.rsf21-11-00062-
local.identifier.wosWOS:000918737200001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85146741941.pdf2,44 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons