Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130889
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorSubbotina, N.en
dc.contributor.authorNovoselova, N.en
dc.contributor.authorKrupennikov, E.en
dc.date.accessioned2024-04-05T16:35:01Z-
dc.date.available2024-04-05T16:35:01Z-
dc.date.issued2023-
dc.identifier.citationSubbotina, N, Novoselova, N & Krupennikov, E 2023, 'Optimal Control Theory and Calculus of Variations in Mathematical Models of Chemotherapy of Malignant Tumors', Mathematics, Том. 11, № 20, 4301. https://doi.org/10.3390/math11204301harvard_pure
dc.identifier.citationSubbotina, N., Novoselova, N., & Krupennikov, E. (2023). Optimal Control Theory and Calculus of Variations in Mathematical Models of Chemotherapy of Malignant Tumors. Mathematics, 11(20), [4301]. https://doi.org/10.3390/math11204301apa_pure
dc.identifier.issn2227-7390-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85175044604&doi=10.3390%2fmath11204301&partnerID=40&md5=f9d5842f6de67e42c83a2ab29dfe1cdb1
dc.identifier.otherhttps://www.mdpi.com/2227-7390/11/20/4301/pdf?version=1697440625pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130889-
dc.description.abstractThis paper is devoted to the analysis of mathematical models of chemotherapy for malignant tumors growing according to the Gompertz law or the generalized logistic law. The influence of the therapeutic agent on the tumor dynamics is determined by a therapy function depending on the time-varying concentration of the drug in the patient’s body. The case of a non-monotonic therapy function with two maxima is studied. It reflects the use of two different therapeutic agents. The state variables of the dynamics are the tumor volume and the amount of the therapeutic agent able to suppress malignant cells (concentration of the drug in the body). The treatment protocol (the rate of administration of the therapeutic agent) is the control in the dynamics. The optimal control problem for this models is considered. It is the problem of the construction of treatment protocols that provide the minimal tumor volume at the end of the treatment. The solution of this problem was obtained by the authors in previous works via the optimal control theory. The form of the considered therapy functions provides a specific structure for the optimal controls. The managerial insights of this structure are discussed. In this paper, the structure of the viability set is described for the model according to the generalized logistic law. It is the set of the initial states of the model for which one can find a treatment protocol that guarantees that the tumor volume remains within the prescribed limits throughout the treatment. The description of the viability set’s structure is based on the optimal control theory and the theory of Hamilton–Jacobi equations. An inverse problem of therapy is also considered, namely the problem of reconstruction of the treatment protocol and identification of the unknown parameter of the intensity of the tumor growth. Reconstruction is carried out by processing information about the observations of the tumor volume dynamics and the measurements of the drug concentration in the body. A solution to this problem is obtained through the use of a method based on the calculus of variations. The results of the numerical simulations are presented herein. © 2023 by the authors.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnauka: 075-02-2023-913en
dc.description.sponsorshipThe contribution of Nina Subbotina and Evgenii Krupennikov was performed as part of research conducted in the Ural Mathematical Center with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Agreement number 075-02-2023-913).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceMathematics2
dc.sourceMathematicsen
dc.subjectCHEMOTHERAPYen
dc.subjectINVERSE THERAPY PROBLEMSen
dc.subjectMALIGNANT TUMORen
dc.subjectOPTIMAL THERAPY STRATEGIESen
dc.subjectTHERAPY FUNCTIONen
dc.subjectVIABILITY SETen
dc.titleOptimal Control Theory and Calculus of Variations in Mathematical Models of Chemotherapy of Malignant Tumorsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/math11204301-
dc.identifier.scopus85175044604-
local.contributor.employeeSubbotina, N., N. N. Krasovskii Institute of Mathematics and Mechanics, 16 S. Kovalevskaya Str, Yekaterinburg, 620108, Russian Federation, Ural Federal University, 19 Mira Street, Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeNovoselova, N., N. N. Krasovskii Institute of Mathematics and Mechanics, 16 S. Kovalevskaya Str, Yekaterinburg, 620108, Russian Federationen
local.contributor.employeeKrupennikov, E., N. N. Krasovskii Institute of Mathematics and Mechanics, 16 S. Kovalevskaya Str, Yekaterinburg, 620108, Russian Federation, Ural Federal University, 19 Mira Street, Ekaterinburg, 620002, Russian Federationen
local.issue20-
local.volume11-
dc.identifier.wos001095078400001-
local.contributor.departmentN. N. Krasovskii Institute of Mathematics and Mechanics, 16 S. Kovalevskaya Str, Yekaterinburg, 620108, Russian Federationen
local.contributor.departmentUral Federal University, 19 Mira Street, Ekaterinburg, 620002, Russian Federationen
local.identifier.pure47879372-
local.description.order4301-
local.identifier.eid2-s2.0-85175044604-
local.identifier.wosWOS:001095078400001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85175044604.pdf573,46 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons