Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130887
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorOsgonbaatar, T.en
dc.contributor.authorMatrenin, P.en
dc.contributor.authorSafaraliev, M.en
dc.contributor.authorZicmane, I.en
dc.contributor.authorRusina, A.en
dc.contributor.authorKokin, S.en
dc.date.accessioned2024-04-05T16:35:00Z-
dc.date.available2024-04-05T16:35:00Z-
dc.date.issued2023-
dc.identifier.citationOsgonbaatar, T, Matrenin, P, Safaraliev, M, Zicmane, I, Rusina, A & Kokin, S 2023, 'A Rank Analysis and Ensemble Machine Learning Model for Load Forecasting in the Nodes of the Central Mongolian Power System', Inventions, Том. 8, № 5, 114. https://doi.org/10.3390/inventions8050114harvard_pure
dc.identifier.citationOsgonbaatar, T., Matrenin, P., Safaraliev, M., Zicmane, I., Rusina, A., & Kokin, S. (2023). A Rank Analysis and Ensemble Machine Learning Model for Load Forecasting in the Nodes of the Central Mongolian Power System. Inventions, 8(5), [114]. https://doi.org/10.3390/inventions8050114apa_pure
dc.identifier.issn2411-5134-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85175027418&doi=10.3390%2finventions8050114&partnerID=40&md5=4748a5575a18af6337ce2978ee1075e01
dc.identifier.otherhttps://www.mdpi.com/2411-5134/8/5/114/pdf?version=1693911622pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130887-
dc.description.abstractForecasting electricity consumption is currently one of the most important scientific and practical tasks in the field of electric power industry. The early retrieval of data on expected load profiles makes it possible to choose the optimal operating mode of the system. The resultant forecast accuracy significantly affects the performance of the entire electrical complex and the operating conditions of the electricity market. This can be achieved through using a model of total electricity consumption designed with an acceptable margin of error. This paper proposes a new method for predicting power consumption in all nodes of the power system through the determination of rank coefficients calculated directly for the corresponding voltage level, including node substations, power supply zones, and other parts of the power system. The forecast of the daily load schedule and the construction of a power consumption model was based on the example of nodes in the central power system in Mongolia. An ensemble of decision trees was applied to construct a daily load schedule and rank coefficients were used to simulate consumption in the nodes. Initial data were obtained from daily load schedules, meteorological factors, and calendar features of the central power system, which accounts for the majority of energy consumption and generation in Mongolia. The study period was 2019–2021. The daily load schedules of the power system were constructed using machine learning with a probability of 1.25%. The proposed rank analysis for power system zones increases the forecasting accuracy for each zone and can improve the quality of management and create more favorable conditions for the development of distributed generation. © 2023 by the authors.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnaukaen
dc.description.sponsorshipThe research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceInventions2
dc.sourceInventionsen
dc.subjectCENTRAL POWER SYSTEM OF MONGOLIAen
dc.subjectDAILY LOAD SCHEDULEen
dc.subjectFORECASTINGen
dc.subjectMACHINE LEARNINGen
dc.subjectNODE SUBSTATIONSen
dc.subjectPOWER SUPPLY ZONEen
dc.subjectRANK MODELSen
dc.titleA Rank Analysis and Ensemble Machine Learning Model for Load Forecasting in the Nodes of the Central Mongolian Power Systemen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/inventions8050114-
dc.identifier.scopus85175027418-
local.contributor.employeeOsgonbaatar, T., Faculty of Energy, Novosibirsk State Technical University, 20 K. Marx Ave, Novosibirsk, 630073, Russian Federationen
local.contributor.employeeMatrenin, P., Faculty of Energy, Novosibirsk State Technical University, 20 K. Marx Ave, Novosibirsk, 630073, Russian Federation, Ural Power Engineering Institute, Ural Federal University, 19 Mira Str, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeSafaraliev, M., Ural Power Engineering Institute, Ural Federal University, 19 Mira Str, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeZicmane, I., Faculty of Electrical and Environmental Engineering, Riga Technical University, 12/1 Azenes Str, Riga, 1048, Latviaen
local.contributor.employeeRusina, A., Faculty of Energy, Novosibirsk State Technical University, 20 K. Marx Ave, Novosibirsk, 630073, Russian Federationen
local.contributor.employeeKokin, S., Ural Power Engineering Institute, Ural Federal University, 19 Mira Str, Yekaterinburg, 620002, Russian Federationen
local.issue5-
local.volume8-
dc.identifier.wos001095068700001-
local.contributor.departmentFaculty of Energy, Novosibirsk State Technical University, 20 K. Marx Ave, Novosibirsk, 630073, Russian Federationen
local.contributor.departmentUral Power Engineering Institute, Ural Federal University, 19 Mira Str, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentFaculty of Electrical and Environmental Engineering, Riga Technical University, 12/1 Azenes Str, Riga, 1048, Latviaen
local.identifier.pure47870711-
local.description.order114-
local.identifier.eid2-s2.0-85175027418-
local.identifier.wosWOS:001095068700001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85175027418.pdf6,7 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons