Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130884
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMatrenin, P.en
dc.contributor.authorManusov, V.en
dc.contributor.authorNazarov, M.en
dc.contributor.authorSafaraliev, M.en
dc.contributor.authorKokin, S.en
dc.contributor.authorZicmane, I.en
dc.contributor.authorBeryozkina, S.en
dc.date.accessioned2024-04-05T16:34:56Z-
dc.date.available2024-04-05T16:34:56Z-
dc.date.issued2023-
dc.identifier.citationMatrenin, P, Manusov, V, Nazarov, M, Safaraliev, M, Kokin, S, Zicmane, I & Beryozkina, S 2023, 'Short-Term Solar Insolation Forecasting in Isolated Hybrid Power Systems Using Neural Networks', Inventions, Том. 8, № 5, 106. https://doi.org/10.3390/inventions8050106harvard_pure
dc.identifier.citationMatrenin, P., Manusov, V., Nazarov, M., Safaraliev, M., Kokin, S., Zicmane, I., & Beryozkina, S. (2023). Short-Term Solar Insolation Forecasting in Isolated Hybrid Power Systems Using Neural Networks. Inventions, 8(5), [106]. https://doi.org/10.3390/inventions8050106apa_pure
dc.identifier.issn2411-5134-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85175001950&doi=10.3390%2finventions8050106&partnerID=40&md5=d5c8178f9fc20e1fc15ab41d4f6e3ba51
dc.identifier.otherhttps://www.mdpi.com/2411-5134/8/5/106/pdf?version=1692849209pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130884-
dc.description.abstractSolar energy is an unlimited and sustainable energy source that holds great importance during the global shift towards environmentally friendly energy production. However, integrating solar power into electrical grids is challenging due to significant fluctuations in its generation. This research aims to develop a model for predicting solar radiation levels using a hybrid power system in the Gorno-Badakhshan Autonomous Oblast of Tajikistan. This study determined the optimal hyperparameters of a multilayer perceptron neural network to enhance the accuracy of solar radiation forecasting. These hyperparameters included the number of neurons, learning algorithm, learning rate, and activation functions. Since there are numerous combinations of hyperparameters, the neural network training process needed to be repeated multiple times. Therefore, a control algorithm of the learning process was proposed to identify stagnation or the emergence of erroneous correlations during model training. The results reveal that different seasons require different hyperparameter values, emphasizing the need for the meticulous tuning of machine learning models and the creation of multiple models for varying conditions. The absolute percentage error of the achieved mean for one-hour-ahead forecasting ranges from 0.6% to 1.7%, indicating a high accuracy compared to the current state-of-the-art practices in this field. The error for one-day-ahead forecasting is between 2.6% and 7.2%. © 2023 by the authors.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnaukaen
dc.description.sponsorshipThe research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceInventions2
dc.sourceInventionsen
dc.subjectFORECASTINGen
dc.subjectISOLATED HYBRID POWER SYSTEMen
dc.subjectNEURAL NETWORKSen
dc.subjectRENEWABLE ENERGY SOURCESen
dc.subjectSOLAR INSOLATIONen
dc.titleShort-Term Solar Insolation Forecasting in Isolated Hybrid Power Systems Using Neural Networksen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/inventions8050106-
dc.identifier.scopus85175001950-
local.contributor.employeeMatrenin, P., Ural Power Engineering Institute, Ural Federal University, 19 Mira Str, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeManusov, V., Department of Power Supply Systems, Novosibirsk State Technical University, 20 K. Marx Ave, Novosibirsk, 630073, Russian Federationen
local.contributor.employeeNazarov, M., Department of Power Supply Systems, Novosibirsk State Technical University, 20 K. Marx Ave, Novosibirsk, 630073, Russian Federationen
local.contributor.employeeSafaraliev, M., Department of Power Supply Systems, Novosibirsk State Technical University, 20 K. Marx Ave, Novosibirsk, 630073, Russian Federationen
local.contributor.employeeKokin, S., Ural Power Engineering Institute, Ural Federal University, 19 Mira Str, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeZicmane, I., Faculty of Electrical and Environmental Engineering, Riga Technical University, 12/1 Azenes Str, Riga, 1048, Latviaen
local.contributor.employeeBeryozkina, S., College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwaiten
local.issue5-
local.volume8-
dc.identifier.wos001095423200001-
local.contributor.departmentUral Power Engineering Institute, Ural Federal University, 19 Mira Str, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentDepartment of Power Supply Systems, Novosibirsk State Technical University, 20 K. Marx Ave, Novosibirsk, 630073, Russian Federationen
local.contributor.departmentFaculty of Electrical and Environmental Engineering, Riga Technical University, 12/1 Azenes Str, Riga, 1048, Latviaen
local.contributor.departmentCollege of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwaiten
local.identifier.pure47871497-
local.description.order106-
local.identifier.eid2-s2.0-85175001950-
local.identifier.wosWOS:001095423200001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85175001950.pdf5,22 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons