Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130773
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Gomoyunov, M. I. | en |
dc.contributor.author | Plaksin, A. R. | en |
dc.date.accessioned | 2024-04-05T16:32:29Z | - |
dc.date.available | 2024-04-05T16:32:29Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Gomoyunov, MI & Plaksin, AR 2023, 'Equivalence of minimax and viscosity solutions of path-dependent Hamilton–Jacobi equations', Journal of Functional Analysis, Том. 285, № 11, 110155. https://doi.org/10.1016/j.jfa.2023.110155 | harvard_pure |
dc.identifier.citation | Gomoyunov, M. I., & Plaksin, A. R. (2023). Equivalence of minimax and viscosity solutions of path-dependent Hamilton–Jacobi equations. Journal of Functional Analysis, 285(11), [110155]. https://doi.org/10.1016/j.jfa.2023.110155 | apa_pure |
dc.identifier.issn | 0022-1236 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85170275130&doi=10.1016%2fj.jfa.2023.110155&partnerID=40&md5=d406ca1c0ed9f3420f88dbaadf058133 | 1 |
dc.identifier.other | https://arxiv.org/pdf/2204.09275 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/130773 | - |
dc.description.abstract | In the paper, we consider a path-dependent Hamilton–Jacobi equation with coinvariant derivatives over the space of continuous functions. Such equations arise from optimal control problems and differential games for time-delay systems. We study generalized solutions of the considered Hamilton–Jacobi equation both in the minimax and in the viscosity sense. A minimax solution is defined as a functional which epigraph and subgraph satisfy certain conditions of weak invariance, while a viscosity solution is defined in terms of a pair of inequalities for coinvariant sub- and supergradients. We prove that these two notions are equivalent, which is the main result of the paper. As a corollary, we obtain comparison and uniqueness results for viscosity solutions of a Cauchy problem for the considered Hamilton–Jacobi equation and a right-end boundary condition. The proof of the main result is based on a certain property of the coinvariant subdifferential. To establish this property, we develop a technique going back to the proofs of multidirectional mean-value inequalities. In particular, the absence of the local compactness property of the underlying continuous function space is overcome by using Borwein–Preiss variational principle with an appropriate gauge-type functional. © 2023 Elsevier Inc. | en |
dc.description.sponsorship | We would like to thank Prof. Andrea Cosso for a discussion on the subject of this paper and for pointing us to the paper [27]. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Academic Press Inc. | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Journal of Functional Analysis | 2 |
dc.source | Journal of Functional Analysis | en |
dc.subject | MINIMAX SOLUTIONS | en |
dc.subject | PATH-DEPENDENT HAMILTON–JACOBI EQUATIONS | en |
dc.subject | VARIATIONAL PRINCIPLE | en |
dc.subject | VISCOSITY SOLUTIONS | en |
dc.title | Equivalence of minimax and viscosity solutions of path-dependent Hamilton–Jacobi equations | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | |info:eu-repo/semantics/submittedVersion | en |
dc.identifier.doi | 10.1016/j.jfa.2023.110155 | - |
dc.identifier.scopus | 85170275130 | - |
local.contributor.employee | Gomoyunov, M.I., N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russian Federation, Ural Federal University, 19 Mira Str., Ekaterinburg, 620002, Russian Federation | en |
local.contributor.employee | Plaksin, A.R., N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russian Federation, Ural Federal University, 19 Mira Str., Ekaterinburg, 620002, Russian Federation | en |
local.issue | 11 | - |
local.volume | 285 | - |
dc.identifier.wos | 001080404600001 | - |
local.contributor.department | N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russian Federation | en |
local.contributor.department | Ural Federal University, 19 Mira Str., Ekaterinburg, 620002, Russian Federation | en |
local.identifier.pure | 44648026 | - |
local.description.order | 110155 | - |
local.identifier.eid | 2-s2.0-85170275130 | - |
local.identifier.wos | WOS:001080404600001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85170275130.pdf | 488,3 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.