Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130773
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorGomoyunov, M. I.en
dc.contributor.authorPlaksin, A. R.en
dc.date.accessioned2024-04-05T16:32:29Z-
dc.date.available2024-04-05T16:32:29Z-
dc.date.issued2023-
dc.identifier.citationGomoyunov, MI & Plaksin, AR 2023, 'Equivalence of minimax and viscosity solutions of path-dependent Hamilton–Jacobi equations', Journal of Functional Analysis, Том. 285, № 11, 110155. https://doi.org/10.1016/j.jfa.2023.110155harvard_pure
dc.identifier.citationGomoyunov, M. I., & Plaksin, A. R. (2023). Equivalence of minimax and viscosity solutions of path-dependent Hamilton–Jacobi equations. Journal of Functional Analysis, 285(11), [110155]. https://doi.org/10.1016/j.jfa.2023.110155apa_pure
dc.identifier.issn0022-1236-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85170275130&doi=10.1016%2fj.jfa.2023.110155&partnerID=40&md5=d406ca1c0ed9f3420f88dbaadf0581331
dc.identifier.otherhttps://arxiv.org/pdf/2204.09275pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130773-
dc.description.abstractIn the paper, we consider a path-dependent Hamilton–Jacobi equation with coinvariant derivatives over the space of continuous functions. Such equations arise from optimal control problems and differential games for time-delay systems. We study generalized solutions of the considered Hamilton–Jacobi equation both in the minimax and in the viscosity sense. A minimax solution is defined as a functional which epigraph and subgraph satisfy certain conditions of weak invariance, while a viscosity solution is defined in terms of a pair of inequalities for coinvariant sub- and supergradients. We prove that these two notions are equivalent, which is the main result of the paper. As a corollary, we obtain comparison and uniqueness results for viscosity solutions of a Cauchy problem for the considered Hamilton–Jacobi equation and a right-end boundary condition. The proof of the main result is based on a certain property of the coinvariant subdifferential. To establish this property, we develop a technique going back to the proofs of multidirectional mean-value inequalities. In particular, the absence of the local compactness property of the underlying continuous function space is overcome by using Borwein–Preiss variational principle with an appropriate gauge-type functional. © 2023 Elsevier Inc.en
dc.description.sponsorshipWe would like to thank Prof. Andrea Cosso for a discussion on the subject of this paper and for pointing us to the paper [27].en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAcademic Press Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceJournal of Functional Analysis2
dc.sourceJournal of Functional Analysisen
dc.subjectMINIMAX SOLUTIONSen
dc.subjectPATH-DEPENDENT HAMILTON–JACOBI EQUATIONSen
dc.subjectVARIATIONAL PRINCIPLEen
dc.subjectVISCOSITY SOLUTIONSen
dc.titleEquivalence of minimax and viscosity solutions of path-dependent Hamilton–Jacobi equationsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/submittedVersionen
dc.identifier.doi10.1016/j.jfa.2023.110155-
dc.identifier.scopus85170275130-
local.contributor.employeeGomoyunov, M.I., N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russian Federation, Ural Federal University, 19 Mira Str., Ekaterinburg, 620002, Russian Federationen
local.contributor.employeePlaksin, A.R., N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russian Federation, Ural Federal University, 19 Mira Str., Ekaterinburg, 620002, Russian Federationen
local.issue11-
local.volume285-
dc.identifier.wos001080404600001-
local.contributor.departmentN.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russian Federationen
local.contributor.departmentUral Federal University, 19 Mira Str., Ekaterinburg, 620002, Russian Federationen
local.identifier.pure44648026-
local.description.order110155-
local.identifier.eid2-s2.0-85170275130-
local.identifier.wosWOS:001080404600001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85170275130.pdf488,3 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.