Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130757
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorErshov, A. A.en
dc.date.accessioned2024-04-05T16:32:11Z-
dc.date.available2024-04-05T16:32:11Z-
dc.date.issued2023-
dc.identifier.citationErshov, AA 2023, 'BILINEAR INTERPOLATION OF PROGRAM CONTROL IN APPROACH PROBLEM', Ufa Mathematical Journal, Том. 15, № 3, стр. 41-53. https://doi.org/10.13108/2023-15-3-41harvard_pure
dc.identifier.citationErshov, A. A. (2023). BILINEAR INTERPOLATION OF PROGRAM CONTROL IN APPROACH PROBLEM. Ufa Mathematical Journal, 15(3), 41-53. https://doi.org/10.13108/2023-15-3-41apa_pure
dc.identifier.issn2304-0122-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85169585616&doi=10.13108%2f2023-15-3-41&partnerID=40&md5=993cf4b46e4db679dda5d5031edbced21
dc.identifier.otherhttps://matem.anrb.ru/sites/default/files/files/vupe59/Ershov.pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130757-
dc.description.abstractWe consider a controlled system involving a constant two-dimensional vector parameter, the approximate value of which is reported to the controlling person only at the moment of the start of movement. Apriori only the set of possible values of these unknown parameter is given. For this controlled system we pose the problem on approaching the target set at a given time. At the same time, we suppose that the controlling person has no the ability to carry out cumbersome calculations in real time associated with the construction of such resolving structures as reachability sets and integral funnels. Therefore, to solve this problem, it is proposed to calculate in advance several “node” resolving controls for parameter values, which are nodes of a grid covering a set of possible parameter values. If at the moment of the beginning of the movement, the parameter value turns out not coincide with any of the grid nodes, it is proposed to calculate the software control by using linear interpolation formulas. However, this procedure can be effective only if a linear combination of controls corresponding to the same “guide” is used in the terminology of the N.N. Krasovsky extreme aiming method. For the possibility of effective use of linear interpolation, it is proposed to build four “node” resolving controls for each grid node and, in addition, to use the method of dividing the control into the main and compensating ones. Due to the application of the latter method, the computed solvability set turns out to be somewhat less than the actual one, but the accuracy of translating the state of the system to the target set increases. A nonlinear generalization of the Zermelo navigation problem is considered as an example. © Ershov A.A. 2023.en
dc.description.sponsorshipRussian Science Foundation, RSF: 19-11-00105en
dc.description.sponsorshipA.A. Ershov, Bilinear interpolation of program control in approach problem. © Ershov A.A. 2023. The research is supported by Russian Science Foundation, grant no. https://rscf.ru/en/project/19-11-00105/. Submitted August 23, 2022.en
dc.description.sponsorshipThe research is supported by Russian Science Foundation, grant no. 19-11-00105, https://rscf.ru/en/project/19-11-00105/.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherInstitute of Mathematics with Computing Centreen
dc.relationinfo:eu-repo/grantAgreement/RSF//19-11-00105en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceUfa Mathematical Journal2
dc.sourceUfa Mathematical Journalen
dc.subjectAPPROACH PROBLEMen
dc.subjectBILINEAR INTERPOLATIONen
dc.subjectCONTROLLED SYSTEMen
dc.subjectUNKNOWN CONSTANT PARAMETERen
dc.titleBILINEAR INTERPOLATION OF PROGRAM CONTROL IN APPROACH PROBLEMen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.13108/2023-15-3-41-
dc.identifier.scopus85169585616-
local.contributor.employeeErshov, A.A., N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya str. 16, Ekaterinburg, 620108, Russian Federation, Ural Federal University named after the first President of Russia B.N. Yeltsin, Mira str. 19, Ekaterinburg, 620002, Russian Federationen
local.description.firstpage41-
local.description.lastpage53-
local.issue3-
local.volume15-
dc.identifier.wos001057520500003-
local.contributor.departmentN.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya str. 16, Ekaterinburg, 620108, Russian Federationen
local.contributor.departmentUral Federal University named after the first President of Russia B.N. Yeltsin, Mira str. 19, Ekaterinburg, 620002, Russian Federationen
local.identifier.pure44660050-
local.identifier.eid2-s2.0-85169585616-
local.fund.rsf19-11-00105-
local.identifier.wosWOS:001057520500003-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85169585616.pdf484,43 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.