Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130752
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMakoveeva, E. V.en
dc.contributor.authorKoroznikova, I. E.en
dc.contributor.authorGlebova, A. E.en
dc.contributor.authorAlexandrov, D. V.en
dc.date.accessioned2024-04-05T16:32:04Z-
dc.date.available2024-04-05T16:32:04Z-
dc.date.issued2023-
dc.identifier.citationMakoveeva, E, Koroznikova, I, Glebova, A & Alexandrov, D 2023, 'Morphological/Dynamic Instability of Directional Crystallization in a Finite Domain with Intense Convection', Crystals, Том. 13, № 8, 1276. https://doi.org/10.3390/cryst13081276harvard_pure
dc.identifier.citationMakoveeva, E., Koroznikova, I., Glebova, A., & Alexandrov, D. (2023). Morphological/Dynamic Instability of Directional Crystallization in a Finite Domain with Intense Convection. Crystals, 13(8), [1276]. https://doi.org/10.3390/cryst13081276apa_pure
dc.identifier.issn2073-4352-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85169158201&doi=10.3390%2fcryst13081276&partnerID=40&md5=f505a66c5bcdbf94bddcb30ea253a2f21
dc.identifier.otherhttps://www.mdpi.com/2073-4352/13/8/1276/pdf?version=1692347051pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130752-
dc.description.abstractThis study is devoted to the morphological/dynamic instability analysis of directional crystallization processes in finite domains with allowance for melt convection. At first, a linear instability theory for steady-state crystallization with a planar solid/liquid interface in the presence of convection was developed. We derived and analyzed a dispersion relation showing the existence of morphological instability over a wide range of wavenumbers. This instability results from perturbations arriving at the solid/liquid interface from the cooled wall through the solid phase. Also, we showed that a planar solid/liquid interface can be unstable when it comes to dynamic perturbations with a zero wavenumber (perturbations in its steady-state velocity). A branch of stable solutions for dynamic perturbations is available too. The crystallizing system can choose one of these branches (unstable or stable) depending of the action of convection. The result of morphological and dynamic instabilities is the appearance of a two-phase (mushy) layer ahead of the planar solid/liquid interface. Therefore, our next step was to analyze the dynamic instability of steady-state crystallization with a mushy layer, which was replaced by a discontinuity interface between the purely solid and liquid phases. This analysis showed the existence of dynamic instability over a wide range of crystallization velocities. This instability appears in the solid material at the cooled wall and propagates to the discontinuity interface, mimicking the properties of a mushy layer. As this takes place, at a certain crystallization velocity, a bifurcation of solutions occurs, leading to the existence of unstable and stable crystallization branches simultaneously. In this case, the system chooses one of them depending of the effect of the convection as before. In general, the crystallizing system may be morphologically/dynamically unstable when it comes to small perturbations arriving at the phase interface due to fluctuations in the heat and mass exchange equipment (e.g., fluctuations in the freezer temperature). © 2023 by the authors.en
dc.description.sponsorshipMinistry of Science and Higher Education of the Russian Federationen
dc.description.sponsorshipI.E.K. and A.E.G. acknowledge the research funding from the Ministry of Science and High Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceCrystals2
dc.sourceCrystalsen
dc.subjectANALYTICAL SOLUTIONSen
dc.subjectCONVECTIONen
dc.subjectCRYSTAL GROWTHen
dc.subjectDIRECTIONAL CRYSTALLIZATIONen
dc.subjectSTABILITY ANALYSISen
dc.titleMorphological/Dynamic Instability of Directional Crystallization in a Finite Domain with Intense Convectionen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/cryst13081276-
dc.identifier.scopus85169158201-
local.contributor.employeeMakoveeva, E.V., Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federation, Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeKoroznikova, I.E., Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeGlebova, A.E., Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeAlexandrov, D.V., Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federation, Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federation, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.issue8-
local.volume13-
dc.identifier.wos001055818800001-
local.contributor.departmentLaboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.contributor.departmentLaboratory of Stochastic Transport of Nanoparticles in Living Systems, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.contributor.departmentDepartment of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.identifier.pure44664760-
local.description.order1276-
local.identifier.eid2-s2.0-85169158201-
local.identifier.wosWOS:001055818800001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85169158201.pdf715,72 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons