Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130745
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorLipin, A. E.en
dc.date.accessioned2024-04-05T16:31:57Z-
dc.date.available2024-04-05T16:31:57Z-
dc.date.issued2023-
dc.identifier.citationLipin, AE 2023, 'Resolvability and complete accumulation points', Acta Mathematica Hungarica, Том. 170, № 2, стр. 661-669. https://doi.org/10.1007/s10474-023-01358-yharvard_pure
dc.identifier.citationLipin, A. E. (2023). Resolvability and complete accumulation points. Acta Mathematica Hungarica, 170(2), 661-669. https://doi.org/10.1007/s10474-023-01358-yapa_pure
dc.identifier.issn0236-5294-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85169005990&doi=10.1007%2fs10474-023-01358-y&partnerID=40&md5=6777478a180b71427ec464f8b4f4581f1
dc.identifier.otherhttps://arxiv.org/pdf/2301.12748pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130745-
dc.description.abstractWe prove that: I. For every regular Lindelöf space X if | X| = Δ (X) and cf | X| ≠ ω , then X is maximally resolvable; II. For every regular countably compact space X if | X| = Δ (X) and cf | X| = ω , then X is maximally resolvable. Here Δ (X) , the dispersion character of X, is the minimum cardinality of a nonempty open subset of X. Statements I and II are corollaries of the main result: for every regular space X if | X| = Δ (X) and every set A⊆ X of cardinality cf | X| has a complete accumulation point, then X is maximally resolvable. Moreover, regularity here can be weakened to π -regularity, and the Lindelöf property can be weakened to the linear Lindelöf property. © 2023, Akadémiai Kiadó, Budapest, Hungary.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnauka: 075-02-2023-913en
dc.description.sponsorshipThe work was performed as part of research conducted in the Ural Mathematical Center with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Agreement number 075-02-2023-913).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringer Science and Business Media B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceActa Mathematica Hungarica2
dc.sourceActa Mathematica Hungaricaen
dc.subjectCOMPLETEACCUMULATION POINTen
dc.subjectCOUNTABLY COMPACT SPACEen
dc.subjectLINDELÖF SPACEen
dc.subjectRESOLVABILITYen
dc.titleResolvability and complete accumulation pointsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/submittedVersionen
dc.identifier.doi10.1007/s10474-023-01358-y-
dc.identifier.scopus85169005990-
local.contributor.employeeLipin, A.E., Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Yekaterinburg, Russian Federationen
local.description.firstpage661-
local.description.lastpage669-
local.issue2-
local.volume170-
dc.identifier.wos001070591600012-
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics, Ural Federal University, Yekaterinburg, Russian Federationen
local.identifier.pure45142923-
local.identifier.eid2-s2.0-85169005990-
local.identifier.wosWOS:001070591600012-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85169005990.pdf166,4 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.