Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130732
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorPorotnikova, N.en
dc.contributor.authorZakharov, D.en
dc.contributor.authorKhodimchuk, A.en
dc.contributor.authorKurumchin, E.en
dc.contributor.authorOsinkin, D.en
dc.date.accessioned2024-04-05T16:31:42Z-
dc.date.available2024-04-05T16:31:42Z-
dc.date.issued2023-
dc.identifier.citationPorotnikova, N, Zakharov, D, Khodimchuk, A, Kurumchin, E & Osinkin, D 2023, 'Determination of Kinetic Parameters and Identification of the Rate-Determining Steps in the Oxygen Exchange Process for LaNi0.6Fe0.4O3−δ', International Journal of Molecular Sciences, Том. 24, № 16, 13013. https://doi.org/10.3390/ijms241613013harvard_pure
dc.identifier.citationPorotnikova, N., Zakharov, D., Khodimchuk, A., Kurumchin, E., & Osinkin, D. (2023). Determination of Kinetic Parameters and Identification of the Rate-Determining Steps in the Oxygen Exchange Process for LaNi0.6Fe0.4O3−δ. International Journal of Molecular Sciences, 24(16), [13013]. https://doi.org/10.3390/ijms241613013apa_pure
dc.identifier.issn1661-6596-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85168716338&doi=10.3390%2fijms241613013&partnerID=40&md5=07516e73c604d45146661057955b150c1
dc.identifier.otherhttps://www.mdpi.com/1422-0067/24/16/13013/pdf?version=1692609108pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130732-
dc.description.abstractThe mixed ionic and electronic oxide LaNi0.6Fe0.4O3−δ (LNF) is a promising ceramic cathode material for solid oxide fuel cells. Since the reaction rate of oxygen interaction with the cathode material is extremely important, the present work considers the oxygen exchange mechanism between O2 and LNF oxide. The kinetic dependence of the oxygen/oxide interaction has been determined by two isotopic methods using 18O-labelled oxygen. The application of the isotope exchange with the gas phase equilibrium (IE-GPE) and the pulsed isotope exchange (PIE) has provided information over a wide range of temperatures (350–800 °C) and oxygen pressures (10–200 mbar), as each method has different applicability limits. Applying mathematical models to treat the kinetic relationships, the oxygen exchange rate (rH, atom × cm−2 × s−1) and the diffusion coefficient (D, cm2/s) were calculated. The values of rH and D depend on both temperature and oxygen pressure. The activation energy of the surface exchange rate is 0.73 ± 0.05 eV for the PIE method at 200 mbar, and 0.48 ± 0.02 eV for the IE-GPE method at 10–20 mbar; for the diffusion coefficient, the activation energy equals 0.62 ± 0.01 eV at 10–20 mbar for the IE-GPE method. Differences in the mechanism of oxygen exchange and diffusion on dense and powder samples are observed due to the different microstructure and surface morphology of the samples. The influence of oxygen pressure on the ratio of contributions of different exchange types to the total oxygen exchange rate is demonstrated. For the first time, the rate-determining step in the oxygen exchange process for LNF material has been identified. This paper discusses the reasons for the difference in the mechanisms of oxygen exchange and diffusion. © 2023 by the authors.en
dc.description.sponsorshipThis research was funded by the Government Assignment No. 122020100324-3 by IHTE UB RAS.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceInternational Journal of Molecular Sciences2
dc.sourceInternational Journal of Molecular Sciencesen
dc.subjectELECTRODE MATERIALen
dc.subjectLANI0.6FE0.4O3−Δen
dc.subjectOXYGEN DIFFUSIONen
dc.subjectRATE-DETERMINING STEPen
dc.subjectSURFACEen
dc.subjectIRONen
dc.subjectLANTHANUMen
dc.subjectMETAL OXIDEen
dc.subjectNICKELen
dc.subjectOXYGENen
dc.subjectOXYGEN 18en
dc.subjectOXIDEen
dc.subjectARTICLEen
dc.subjectCERAMICSen
dc.subjectCHEMICAL ANALYSISen
dc.subjectCHEMICAL INTERACTIONen
dc.subjectCRYSTAL STRUCTUREen
dc.subjectDIFFUSION COEFFICIENTen
dc.subjectISOTOPE EXCHANGE WITH GAS PHASE EQUILIBRATIONen
dc.subjectISOTOPE LABELINGen
dc.subjectMATHEMATICAL MODELen
dc.subjectOXYGEN DIFFUSIONen
dc.subjectOXYGEN TENSIONen
dc.subjectPARTIAL PRESSUREen
dc.subjectPULSE ISOTOPE EXCHANGEen
dc.subjectSURFACE PROPERTYen
dc.subjectDIFFUSIONen
dc.subjectGASen
dc.subjectCERAMICSen
dc.subjectDIFFUSIONen
dc.subjectGASESen
dc.subjectOXIDESen
dc.subjectOXYGENen
dc.titleDetermination of Kinetic Parameters and Identification of the Rate-Determining Steps in the Oxygen Exchange Process for LaNi0.6Fe0.4O3−δen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/ijms241613013-
dc.identifier.scopus85168716338-
local.contributor.employeePorotnikova, N., Laboratory of Kinetics, The Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, 20 Akademicheskaya Street, Yekaterinburg, 620137, Russian Federationen
local.contributor.employeeZakharov, D., Laboratory of Kinetics, The Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, 20 Akademicheskaya Street, Yekaterinburg, 620137, Russian Federationen
local.contributor.employeeKhodimchuk, A., Laboratory of Kinetics, The Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, 20 Akademicheskaya Street, Yekaterinburg, 620137, Russian Federation, Laboratory of Electrochemical Devices and Fuel Cells, Ural Federal, University Named after the First President of Russia B. N. Yeltsin, 19 Mira Street, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeKurumchin, E., Laboratory of Kinetics, The Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, 20 Akademicheskaya Street, Yekaterinburg, 620137, Russian Federationen
local.contributor.employeeOsinkin, D., Laboratory of Kinetics, The Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, 20 Akademicheskaya Street, Yekaterinburg, 620137, Russian Federation, Department of Environmental Economics, Graduate School of Economics and Management, Ural Federal University, First President of Russia B. N. Yeltsin, 19 Mira Street, Yekaterinburg, 620002, Russian Federationen
local.issue16-
local.volume24-
dc.identifier.wos001056077100001-
local.contributor.departmentLaboratory of Kinetics, The Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, 20 Akademicheskaya Street, Yekaterinburg, 620137, Russian Federationen
local.contributor.departmentLaboratory of Electrochemical Devices and Fuel Cells, Ural Federal, University Named after the First President of Russia B. N. Yeltsin, 19 Mira Street, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentDepartment of Environmental Economics, Graduate School of Economics and Management, Ural Federal University, First President of Russia B. N. Yeltsin, 19 Mira Street, Yekaterinburg, 620002, Russian Federationen
local.identifier.pure44666703-
local.description.order13013-
local.identifier.eid2-s2.0-85168716338-
local.identifier.wosWOS:001056077100001-
local.identifier.pmid37629194-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85168716338.pdf5,12 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons