Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130725
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Gusev, S. V. | en |
dc.contributor.author | Volkov, M. V. | en |
dc.date.accessioned | 2024-04-05T16:31:30Z | - |
dc.date.available | 2024-04-05T16:31:30Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Gusev, S & Volkov, M 2023, 'SEMIRING AND INVOLUTION IDENTITIES OF POWER GROUPS', Journal of the Australian Mathematical Society, Том. 115, № 3, стр. 354-374. https://doi.org/10.1017/S1446788722000374 | harvard_pure |
dc.identifier.citation | Gusev, S., & Volkov, M. (2023). SEMIRING AND INVOLUTION IDENTITIES OF POWER GROUPS. Journal of the Australian Mathematical Society, 115(3), 354-374. https://doi.org/10.1017/S1446788722000374 | apa_pure |
dc.identifier.issn | 1446-7887 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146537697&doi=10.1017%2fS1446788722000374&partnerID=40&md5=1df01b00b7f04418c6148f000e0d76db | 1 |
dc.identifier.other | https://arxiv.org/pdf/2206.08761 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/130725 | - |
dc.description.abstract | For every group G, the set of its subsets forms a semiring under set-theoretical union and element-wise multiplication, and forms an involution semigroup under and element-wise inversion. We show that if the group G is finite, non-Dedekind, and solvable, neither the semiring nor the involution semigroup admits a finite identity basis. We also solve the finite basis problem for the semiring of Hall relations over any finite set. © 2023 The Author(s). Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc. | en |
dc.description.sponsorship | Russian Science Foundation, RSF: 22-21-00650 | en |
dc.description.sponsorship | Supported by the Russian Science Foundation (grant No. 22-21-00650). | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Cambridge University Press | en |
dc.relation | info:eu-repo/grantAgreement/RSF//22-21-00650 | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Journal of the Australian Mathematical Society | 2 |
dc.source | Journal of the Australian Mathematical Society | en |
dc.subject | ADDITIVELY IDEMPOTENT SEMIRING | en |
dc.subject | BLOCK-GROUP | en |
dc.subject | BRANDT MONOID | en |
dc.subject | FINITE BASIS PROBLEM | en |
dc.subject | HALL RELATION | en |
dc.subject | INVOLUTION SEMIGROUP | en |
dc.subject | POWER GROUP | en |
dc.subject | POWER SEMIRING | en |
dc.title | Semiring and Involution Identities of Power Groups | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | |info:eu-repo/semantics/submittedVersion | en |
dc.identifier.doi | 10.1017/S1446788722000374 | - |
dc.identifier.scopus | 85146537697 | - |
local.contributor.employee | Gusev, S.V., Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russian Federation | en |
local.contributor.employee | Volkov, M.V., Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russian Federation | en |
local.description.firstpage | 354 | - |
local.description.lastpage | 374 | - |
local.issue | 3 | - |
local.volume | 115 | - |
dc.identifier.wos | 000916592000001 | - |
local.contributor.department | Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russian Federation | en |
local.identifier.pure | 49308469 | - |
local.identifier.eid | 2-s2.0-85146537697 | - |
local.fund.rsf | 22-21-00650 | - |
local.identifier.wos | WOS:000916592000001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85146537697.pdf | 236,49 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.