Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130707
Название: | Energy Spectrum of the Valence Band in HgTe Quantum Wells on the Way from a Two- to Three-Dimensional Topological Insulator |
Авторы: | Minkov, G. M. Rut, O. E. Sherstobitov, A. A. Dvoretsky, S. A. Mikhailov, N. N. Aleshkin, V. Y. |
Дата публикации: | 2023 |
Издатель: | Pleiades Publishing |
Библиографическое описание: | Minkov, G, Rut, O, Sherstobitov, A, Dvoretsky, S, Mikhailov, N & Aleshkin, V 2023, 'Energy Spectrum of the Valence Band in HgTe Quantum Wells on the Way from a Two- to Three-Dimensional Topological Insulator', JETP Letters, Том. 117, № 12, стр. 916-922. https://doi.org/10.1134/S0021364023601240 Minkov, G., Rut, O., Sherstobitov, A., Dvoretsky, S., Mikhailov, N., & Aleshkin, V. (2023). Energy Spectrum of the Valence Band in HgTe Quantum Wells on the Way from a Two- to Three-Dimensional Topological Insulator. JETP Letters, 117(12), 916-922. https://doi.org/10.1134/S0021364023601240 |
Аннотация: | The magnetic field and temperature dependences of longitudinal magnetoresistance and the Hall effect have been measured in order to determine the energy spectrum of the valence band in HgTe quantum wells with the width d QW = 20–200 nm. The comparison of hole densities determined from the period of Shubnikov–de Haas oscillations and the Hall effect shows that states at the top of the valence band are doubly degenerate in the entire d QW range, and the cyclotron mass (Formula presented.) determined from the temperature dependence of the amplitude of Shubnikov–de Haas oscillation increases monotonically from (Formula presented.) is the mass of the free electron) with increasing hole density (Formula presented.) cm–2. The determined dependence has been compared to theoretical dependences (Formula presented.) calculated within the four-band k P model. These calculations predict an approximate stepwise increase in (Formula presented.) owing to the pairwise merging of side extrema with increasing hole density, which should be observed at (Formula presented.) and 4 × 1010 cm–2 for d QW = 20 and 200 nm, respectively. The experimental dependences are strongly inconsistent with this prediction. It has been shown that the inclusion of additional factors (electric field in the quantum well, strain) does not remove the contradiction between the experiment and theory. Consequently, it is doubtful that the mentioned k P calculations adequately describe the valence band at all d QW values. © 2023, The Author(s). |
URI: | http://elar.urfu.ru/handle/10995/130707 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
Идентификатор РИНЦ: | 62292489 |
Идентификатор SCOPUS: | 85167459133 |
Идентификатор WOS: | 001041242400007 |
Идентификатор PURE: | 43267038 |
ISSN: | 0021-3640 |
DOI: | 10.1134/S0021364023601240 |
Сведения о поддержке: | Ministry of Education and Science of the Russian Federation, Minobrnauka: 075-15-2020-797, 13.1902.21.0024 This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 075-15-2020-797 (13.1902.21.0024). |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85167459133.pdf | 823,48 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons