Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130698
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMelnikova, I. V.en
dc.contributor.authorBovkun, V. A.en
dc.date.accessioned2024-04-05T16:30:38Z-
dc.date.available2024-04-05T16:30:38Z-
dc.date.issued2023-
dc.identifier.citationMelnikova, IV & Bovkun, VA 2023, 'Связь между дискретными финансовыми моделями и непрерывными моделями с процессами Винера и Пуассона', Computer Research and Modeling, Том. 15, № 3, стр. 781-795. https://doi.org/10.20537/2076-7633-2023-15-3-781-795harvard_pure
dc.identifier.citationMelnikova, I. V., & Bovkun, V. A. (2023). Связь между дискретными финансовыми моделями и непрерывными моделями с процессами Винера и Пуассона. Computer Research and Modeling, 15(3), 781-795. https://doi.org/10.20537/2076-7633-2023-15-3-781-795apa_pure
dc.identifier.issn2076-7633-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85166775703&doi=10.20537%2f2076-7633-2023-15-3-781-795&partnerID=40&md5=2d58cefdb4e5ceaa1cead420da57e18e1
dc.identifier.otherhttp://crm.ics.org.ru/uploads/crmissues/crm_2023_03/52_melnikova.pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130698-
dc.description.abstractThe paper is devoted to the study of relationships between discrete and continuous models financial processes and their probabilistic characteristics. First, a connection is established between the price processes of stocks, hedging portfolio and options in the models conditioned by binomial perturbations and their limit perturbations of the Brownian motion type. Secondly, analogues in the coefficients of stochastic equations with various random processes, continuous and jumpwise, and in the coefficients corresponding deterministic equations for their probabilistic characteristics. Statement of the results on the connections and finding analogies, obtained in this paper, led to the need for an adequate presentation of preliminary information and results from financial mathematics, as well as descriptions of related objects of stochastic analysis. In this paper, partially new and known results are presented in an accessible form for those who are not specialists in financial mathematics and stochastic analysis, and for whom these results are important from the point of view of applications. Specifically, the following sections are presented. • In one- and n-period binomial models, it is proposed a unified approach to determining on the probability space a risk-neutral measure with which the discounted option price becomes a martingale. The resulting martingale formula for the option price is suitable for numerical simulation. In the following sections, the risk-neutral measures approach is applied to study financial processes in continuous-time models. • In continuous time, models of the price of shares, hedging portfolios and options are considered in the form of stochastic equations with the Ito integral over Brownian motion and over a compensated Poisson process. The study of the properties of these processes in this section is based on one of the central objects of stochastic analysis — the Ito formula. Special attention is given to the methods of its application. • The famous Black – Scholes formula is presented, which gives a solution to the partial differential equation for the function v(t, x), which, when x = S (t) is substituted, where S (t) is the stock price at the moment time t, gives the price of the option in the model with continuous perturbation by Brownian motion. • The analogue of the Black – Scholes formula for the case of the model with a jump-like perturbation by the Poisson process is suggested. The derivation of this formula is based on the technique of risk-neutral measures and the independence lemma. © 2023 Irina V. Melnikova, Vadim A. Bovkun This work is licensed under the Creative Commons Attribution-NoDerivs 3.0 Unported License.en
dc.description.sponsorshipRussian Science Foundation, RSF: 23–21–00199en
dc.description.sponsorshipThis work was supported by Russian Science Foundation, project No. 23–21–00199.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherInstitute of Computer Science Izhevsken
dc.relationinfo:eu-repo/grantAgreement/RSF//23-21-00199en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-by-ndother
dc.rights.urihttps://creativecommons.org/licenses/by-nd/4.0/unpaywall
dc.sourceComputer Research and Modeling2
dc.sourceComputer Research and Modelingen
dc.subjectBINOMIAL MODELen
dc.subjectBROWNIAN MOTIONen
dc.subjectDISCOUNTED PRICEen
dc.subjectMARTINGALEen
dc.subjectPOISSON PROCESSen
dc.subjectSTOCHASTIC EQUATIONen
dc.titleConnection between discrete financial models and continuous models with Wiener and Poisson processesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.rsi54284817-
dc.identifier.doi10.20537/2076-7633-2023-15-3-781-795-
dc.identifier.scopus85166775703-
local.contributor.employeeMelnikova, I.V., Ural Federal University, 51 Lenina ave., Ekaterinburg, 620075, Russian Federationen
local.contributor.employeeBovkun, V.A., Ural Federal University, 51 Lenina ave., Ekaterinburg, 620075, Russian Federationen
local.description.firstpage781-
local.description.lastpage795-
local.issue3-
local.volume15-
local.contributor.departmentUral Federal University, 51 Lenina ave., Ekaterinburg, 620075, Russian Federationen
local.identifier.pure43270671-
local.identifier.eid2-s2.0-85166775703-
local.fund.rsf23-21-00199-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85166775703.pdf213,84 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons