Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130665
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorDokuchaev, A.en
dc.contributor.authorChumarnaya, T.en
dc.contributor.authorBazhutina, A.en
dc.contributor.authorKhamzin, S.en
dc.contributor.authorLebedeva, V.en
dc.contributor.authorLyubimtseva, T.en
dc.contributor.authorZubarev, S.en
dc.contributor.authorLebedev, D.en
dc.contributor.authorSolovyova, O.en
dc.date.accessioned2024-04-05T16:28:44Z-
dc.date.available2024-04-05T16:28:44Z-
dc.date.issued2023-
dc.identifier.citationDokuchaev, A, Chumarnaya, T, Bazhutina, A, Khamzin, S, Lebedeva, V, Lyubimtseva, T, Zubarev, S, Lebedev, D & Solovyova, O 2023, 'Combination of personalized computational modeling and machine learning for optimization of left ventricular pacing site in cardiac resynchronization therapy', Frontiers in Physiology, Том. 14, 1162520. https://doi.org/10.3389/fphys.2023.1162520harvard_pure
dc.identifier.citationDokuchaev, A., Chumarnaya, T., Bazhutina, A., Khamzin, S., Lebedeva, V., Lyubimtseva, T., Zubarev, S., Lebedev, D., & Solovyova, O. (2023). Combination of personalized computational modeling and machine learning for optimization of left ventricular pacing site in cardiac resynchronization therapy. Frontiers in Physiology, 14, [1162520]. https://doi.org/10.3389/fphys.2023.1162520apa_pure
dc.identifier.issn1664-042X-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85165659555&doi=10.3389%2ffphys.2023.1162520&partnerID=40&md5=f1421f03573ffe2b1c564f6ccbb2383d1
dc.identifier.otherhttps://www.frontiersin.org/articles/10.3389/fphys.2023.1162520/pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130665-
dc.description.abstractIntroduction: The 30–50% non-response rate to cardiac resynchronization therapy (CRT) calls for improved patient selection and optimized pacing lead placement. The study aimed to develop a novel technique using patient-specific cardiac models and machine learning (ML) to predict an optimal left ventricular (LV) pacing site (ML-PS) that maximizes the likelihood of LV ejection fraction (LVEF) improvement in a given CRT candidate. To validate the approach, we evaluated whether the distance DPS between the clinical LV pacing site (ref-PS) and ML-PS is associated with improved response rate and magnitude. Materials and methods: We reviewed retrospective data for 57 CRT recipients. A positive response was defined as a more than 10% LVEF improvement. Personalized models of ventricular activation and ECG were created from MRI and CT images. The characteristics of ventricular activation during intrinsic rhythm and biventricular (BiV) pacing with ref-PS were derived from the models and used in combination with clinical data to train supervised ML classifiers. The best logistic regression model classified CRT responders with a high accuracy of 0.77 (ROC AUC = 0.84). The LR classifier, model simulations and Bayesian optimization with Gaussian process regression were combined to identify an optimal ML-PS that maximizes the ML-score of CRT response over the LV surface in each patient. Results: The optimal ML-PS improved the ML-score by 17 ± 14% over the ref-PS. Twenty percent of the non-responders were reclassified as positive at ML-PS. Selection of positive patients with a max ML-score >0.5 demonstrated an improved clinical response rate. The distance DPS was shorter in the responders. The max ML-score and DPS were found to be strong predictors of CRT response (ROC AUC = 0.85). In the group with max ML-score > 0.5 and DPS< 30 mm, the response rate was 83% compared to 14% in the rest of the cohort. LVEF improvement in this group was higher than in the other patients (16 ± 8% vs. 7 ± 8%). Conclusion: A new technique combining clinical data, personalized heart modelling and supervised ML demonstrates the potential for use in clinical practice to assist in optimizing patient selection and predicting optimal LV pacing lead position in HF candidates for CRT. Copyright © 2023 Dokuchaev, Chumarnaya, Bazhutina, Khamzin, Lebedeva, Lyubimtseva, Zubarev, Lebedev and Solovyova.en
dc.description.sponsorshipRussian Science Foundation, RSF: 19-14-00134en
dc.description.sponsorshipThis work was supported by Russian Science Foundation Grant No. 19-14-00134.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherFrontiers Media SAen
dc.relationinfo:eu-repo/grantAgreement/RSF//19-14-00134en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceFrontiers in Physiology2
dc.sourceFrontiers in Physiologyen
dc.subjectCARDIAC MODELINGen
dc.subjectCARDIAC RESYNCHRONIZATION THERAPYen
dc.subjectELECTROPHYSIOLOGYen
dc.subjectHEART FAILUREen
dc.subjectHYBRID APPROACHen
dc.subjectMACHINE LEARNINGen
dc.subjectOPTIMAL DESIGN FOR PACING LEAD POSITIONen
dc.subjectPREDICTIONen
dc.subjectARTICLEen
dc.subjectBAYES THEOREMen
dc.subjectCARDIAC RESYNCHRONIZATION THERAPYen
dc.subjectCLASSIFIERen
dc.subjectCOHORT ANALYSISen
dc.subjectCOMPUTER ASSISTED TOMOGRAPHYen
dc.subjectCOMPUTER MODELen
dc.subjectELECTROCARDIOGRAMen
dc.subjectEVALUATION STUDYen
dc.subjectHEART ELECTROPHYSIOLOGYen
dc.subjectHEART FAILUREen
dc.subjectHEART LEFT VENTRICLEen
dc.subjectHEART LEFT VENTRICLE EJECTION FRACTIONen
dc.subjectHEART LEFT VENTRICLE PACING SITEen
dc.subjectHEART RHYTHMen
dc.subjectHEART VENTRICLE CONTRACTIONen
dc.subjectHEART VENTRICLE PACINGen
dc.subjectHUMANen
dc.subjectLOGISTIC REGRESSION ANALYSISen
dc.subjectMACHINE LEARNINGen
dc.subjectMAJOR CLINICAL STUDYen
dc.subjectNUCLEAR MAGNETIC RESONANCE IMAGINGen
dc.subjectPATIENT SELECTIONen
dc.subjectPERSONALIZED MEDICINEen
dc.subjectPREDICTIONen
dc.subjectPREDICTOR VARIABLEen
dc.subjectPROOF OF CONCEPTen
dc.subjectRECEIVER OPERATING CHARACTERISTICen
dc.subjectRETROSPECTIVE STUDYen
dc.subjectSIMULATIONen
dc.subjectSUPERVISED MACHINE LEARNINGen
dc.subjectTREATMENT RESPONSEen
dc.subjectVALIDATION STUDYen
dc.titleCombination of personalized computational modeling and machine learning for optimization of left ventricular pacing site in cardiac resynchronization therapyen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3389/fphys.2023.1162520-
dc.identifier.scopus85165659555-
local.contributor.employeeDokuchaev, A., Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federationen
local.contributor.employeeChumarnaya, T., Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation, Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russian Federationen
local.contributor.employeeBazhutina, A., Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation, Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russian Federationen
local.contributor.employeeKhamzin, S., Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federationen
local.contributor.employeeLebedeva, V., Almazov National Medical Research Centre, Saint Petersburg, Russian Federationen
local.contributor.employeeLyubimtseva, T., Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation, Almazov National Medical Research Centre, Saint Petersburg, Russian Federationen
local.contributor.employeeZubarev, S., Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation, Almazov National Medical Research Centre, Saint Petersburg, Russian Federationen
local.contributor.employeeLebedev, D., Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation, Almazov National Medical Research Centre, Saint Petersburg, Russian Federationen
local.contributor.employeeSolovyova, O., Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation, Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russian Federationen
local.volume14-
dc.identifier.wos001033654000001-
local.contributor.departmentInstitute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federationen
local.contributor.departmentLaboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russian Federationen
local.contributor.departmentAlmazov National Medical Research Centre, Saint Petersburg, Russian Federationen
local.identifier.pure43271747-
local.description.order1162520-
local.identifier.eid2-s2.0-85165659555-
local.fund.rsf19-14-00134-
local.identifier.wosWOS:001033654000001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85165659555.pdf32,44 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons