Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130651
Название: Recurrent Neural Network-Based Autoencoder for Problems of Automatic Time Series Analysis at Power Facilities
Авторы: Matrenin, P. V.
Khalyasmaa, A. I.
Potachits, Y. V.
Дата публикации: 2023
Издатель: Institute of Power Engineering
Библиографическое описание: Matrenin, PV, Khalyasmaa, AI & Potachits, YV 2023, 'Автокодирующая рекуррентная нейронная сеть для задач автоматизации анализа временных рядов на объектах энергетики', Problems of the Regional Energetics, № 2(58), стр. 61-71. https://doi.org/10.52254/1857-0070.2023.2-58-06
Matrenin, P. V., Khalyasmaa, A. I., & Potachits, Y. V. (2023). Автокодирующая рекуррентная нейронная сеть для задач автоматизации анализа временных рядов на объектах энергетики. Problems of the Regional Energetics, (2(58)), 61-71. https://doi.org/10.52254/1857-0070.2023.2-58-06
Аннотация: Digitalization of the energy sector leads to an increase in the volume and rate of data collection. A primary barrier to the proper management of the technological data is the lack of data labeling corresponding to emergency modes, power equipment technical state, etc. Thus, despite the large amount of data, there is a shortage of labeled data suitable for training, validating and testing the machine learning models. Labeling by an expert takes too much time, so there is an actual task to automatically identify data fragments that are potentially of interest. The aim of the work is to develop an algorithm for prioritizing the fragments of the time series using the compact recurrent autoencoder. To achieve the goal, a neural network architecture was developed based on recurrent encoding and decoding cells, capable of unsupervised learning. The model was tested on two data sets: a synthetic sinusoidal signal with missing values and electric current measurements with thermal limit deviations. The substantial results of the work are the compact architecture of the autocoding model and the high interpretability of the output. The most significant achievements of the study are both the autocoding neural network model, which does not require initial assumption about the type of deviations, and the proposed algorithm for prioritizing the data fragments. The significance of the results is prooved by the reduction of the time for analyzing and labeling large data arrays with technological parameters of the electrical networks, which allows using these data for training, validating and testing. © 2023 Sovero Press Publishing House. All rights reserved.
Ключевые слова: AUTOENCODER
OPERATING PARAMETERS OF ELECTRICAL NETWORKS
RECURRENT NEURAL NETWORKS
TIME SERIES PROCESSING
URI: http://elar.urfu.ru/handle/10995/130651
Условия доступа: info:eu-repo/semantics/openAccess
cc-by
Текст лицензии: https://creativecommons.org/licenses/by/4.0/
Идентификатор SCOPUS: 85165252958
Идентификатор WOS: 000994818300006
Идентификатор PURE: 40046002
ISSN: 1857-0070
DOI: 10.52254/1857-0070.2023.2-58-06
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85165252958.pdf732,97 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons