Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/130651
Title: Recurrent Neural Network-Based Autoencoder for Problems of Automatic Time Series Analysis at Power Facilities
Authors: Matrenin, P. V.
Khalyasmaa, A. I.
Potachits, Y. V.
Issue Date: 2023
Publisher: Institute of Power Engineering
Citation: Matrenin, PV, Khalyasmaa, AI & Potachits, YV 2023, 'Автокодирующая рекуррентная нейронная сеть для задач автоматизации анализа временных рядов на объектах энергетики', Problems of the Regional Energetics, № 2(58), стр. 61-71. https://doi.org/10.52254/1857-0070.2023.2-58-06
Matrenin, P. V., Khalyasmaa, A. I., & Potachits, Y. V. (2023). Автокодирующая рекуррентная нейронная сеть для задач автоматизации анализа временных рядов на объектах энергетики. Problems of the Regional Energetics, (2(58)), 61-71. https://doi.org/10.52254/1857-0070.2023.2-58-06
Abstract: Digitalization of the energy sector leads to an increase in the volume and rate of data collection. A primary barrier to the proper management of the technological data is the lack of data labeling corresponding to emergency modes, power equipment technical state, etc. Thus, despite the large amount of data, there is a shortage of labeled data suitable for training, validating and testing the machine learning models. Labeling by an expert takes too much time, so there is an actual task to automatically identify data fragments that are potentially of interest. The aim of the work is to develop an algorithm for prioritizing the fragments of the time series using the compact recurrent autoencoder. To achieve the goal, a neural network architecture was developed based on recurrent encoding and decoding cells, capable of unsupervised learning. The model was tested on two data sets: a synthetic sinusoidal signal with missing values and electric current measurements with thermal limit deviations. The substantial results of the work are the compact architecture of the autocoding model and the high interpretability of the output. The most significant achievements of the study are both the autocoding neural network model, which does not require initial assumption about the type of deviations, and the proposed algorithm for prioritizing the data fragments. The significance of the results is prooved by the reduction of the time for analyzing and labeling large data arrays with technological parameters of the electrical networks, which allows using these data for training, validating and testing. © 2023 Sovero Press Publishing House. All rights reserved.
Keywords: AUTOENCODER
OPERATING PARAMETERS OF ELECTRICAL NETWORKS
RECURRENT NEURAL NETWORKS
TIME SERIES PROCESSING
URI: http://elar.urfu.ru/handle/10995/130651
Access: info:eu-repo/semantics/openAccess
cc-by
License text: https://creativecommons.org/licenses/by/4.0/
SCOPUS ID: 85165252958
WOS ID: 000994818300006
PURE ID: 40046002
ISSN: 1857-0070
DOI: 10.52254/1857-0070.2023.2-58-06
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85165252958.pdf732,97 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons