Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130602
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorLobanov, M. L.en
dc.contributor.authorZorina, M. A.en
dc.contributor.authorKarabanalov, M. S.en
dc.contributor.authorUrtsev, N. V.en
dc.contributor.authorRedikultsev, A. A.en
dc.date.accessioned2024-04-05T16:27:06Z-
dc.date.available2024-04-05T16:27:06Z-
dc.date.issued2023-
dc.identifier.citationLobanov, ML, Zorina, MA, Karabanalov, MS, Urtsev, NV & Redikultsev, AA 2023, 'Phase Transformation Crystallography in Pipeline HSLA Steel after TMCP', Metals, Том. 13, № 6, стр. 1121. https://doi.org/10.3390/met13061121harvard_pure
dc.identifier.citationLobanov, M. L., Zorina, M. A., Karabanalov, M. S., Urtsev, N. V., & Redikultsev, A. A. (2023). Phase Transformation Crystallography in Pipeline HSLA Steel after TMCP. Metals, 13(6), 1121. https://doi.org/10.3390/met13061121apa_pure
dc.identifier.issn2075-4701-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85163837724&doi=10.3390%2fmet13061121&partnerID=40&md5=10be3bf9fd0f259ad7ccf01deb2f7b771
dc.identifier.otherhttps://www.mdpi.com/2075-4701/13/6/1121/pdf?version=1686802326pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130602-
dc.description.abstractThermo-mechanical controlled processing (TMCP) is employed to obtain the required level of mechanical properties of contemporary high-strength low-alloy (HSLA) steel plates utilized for gas and oil pipeline production. The strength, deformation behavior and resistance to the formation and propagation of running fractures of the pipeline steel are mainly determined by its microstructure and crystallographic texture. These are formed as a result of austenite deformation and consequent γ→α-transformation. This present study analyses the crystallographic regularities of the structural and textural state formation in a steel plate that has been industrially produced by means of TMCP. The values of the mechanical properties that have been measured in different directions demonstrate the significance of the crystallographic texture in the deformation and failure of steel products. An electron backscatter diffraction (EBSD) method and crystallographic analysis were utilized to establish the connection between the main texture components of the deformed austenite and α-phase orientations. This paper demonstrates that the crystallographic texture that is formed due to a multipath γ→α-transformation results from the α-phase nucleation on the special boundaries between grains with γ-phase orientations. The analysis of the spectra of the α-γ-interface boundary angle deviations from the Kurdjumov–Sachs (K–S), Nishiyama–Wassermann (N–W), and Greninger–Troiano (G–T) orientation relationships (ORs) allows to suggest that the observed austenite particles represent a secondary austenite (not retained) that precipitates at intercrystalline α-phase boundaries and correspond to the ORs with regard to only one adjacent crystallite. © 2023 by the authors.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnaukaen
dc.description.sponsorshipThis research was funded by the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceMetals2
dc.sourceMetalsen
dc.subjectDEFORMATION ANISOTROPYen
dc.subjectEBSDen
dc.subjectHSLA STEELen
dc.subjectORIENTATION RELATIONSHIPSen
dc.subjectTEXTUREen
dc.subjectTMCPen
dc.subjectΓ→Α-TRANSFORMATIONen
dc.titlePhase Transformation Crystallography in Pipeline HSLA Steel after TMCPen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/met13061121-
dc.identifier.scopus85163837724-
local.contributor.employeeLobanov, M.L., Heat Treatment & Physics of Metals Department, Ural Federal University, 19 Mira St., Ekaterinburg, 620062, Russian Federationen
local.contributor.employeeZorina, M.A., Heat Treatment & Physics of Metals Department, Ural Federal University, 19 Mira St., Ekaterinburg, 620062, Russian Federationen
local.contributor.employeeKarabanalov, M.S., Heat Treatment & Physics of Metals Department, Ural Federal University, 19 Mira St., Ekaterinburg, 620062, Russian Federationen
local.contributor.employeeUrtsev, N.V., Heat Treatment & Physics of Metals Department, Ural Federal University, 19 Mira St., Ekaterinburg, 620062, Russian Federationen
local.contributor.employeeRedikultsev, A.A., Heat Treatment & Physics of Metals Department, Ural Federal University, 19 Mira St., Ekaterinburg, 620062, Russian Federationen
local.issue6-
local.volume13-
dc.identifier.wos001020952800001-
local.contributor.departmentHeat Treatment & Physics of Metals Department, Ural Federal University, 19 Mira St., Ekaterinburg, 620062, Russian Federationen
local.identifier.pure41590659-
local.description.order1121-
local.identifier.eid2-s2.0-85163837724-
local.identifier.wosWOS:001020952800001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85163837724.pdf5,82 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons