Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130549
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBoronina, A.en
dc.contributor.authorMaksimenko, V.en
dc.contributor.authorHramov, A. E.en
dc.date.accessioned2024-04-05T16:25:39Z-
dc.date.available2024-04-05T16:25:39Z-
dc.date.issued2023-
dc.identifier.citationBoronina, A, Maksimenko, V & Hramov, AE 2023, 'Convolutional Neural Network Outperforms Graph Neural Network on the Spatially Variant Graph Data', Mathematics, Том. 11, № 11, 2515. https://doi.org/10.3390/math11112515harvard_pure
dc.identifier.citationBoronina, A., Maksimenko, V., & Hramov, A. E. (2023). Convolutional Neural Network Outperforms Graph Neural Network on the Spatially Variant Graph Data. Mathematics, 11(11), [2515]. https://doi.org/10.3390/math11112515apa_pure
dc.identifier.issn2227-7390-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85161461992&doi=10.3390%2fmath11112515&partnerID=40&md5=bf7b3aa262ca892f7e4ad8262dfd251c1
dc.identifier.otherhttps://www.mdpi.com/2227-7390/11/11/2515/pdf?version=1685496032pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130549-
dc.description.abstractApplying machine learning algorithms to graph-structured data has garnered significant attention in recent years due to the prevalence of inherent graph structures in real-life datasets. However, the direct application of traditional deep learning algorithms, such as Convolutional Neural Networks (CNNs), is limited as they are designed for regular Euclidean data like 2D grids and 1D sequences. In contrast, graph-structured data are in a non-Euclidean form. Graph Neural Networks (GNNs) are specifically designed to handle non-Euclidean data and make predictions based on connectivity rather than spatial structure. Real-life graph data can be broadly categorized into two types: spatially-invariant graphs, where the link structure between nodes is independent of their spatial positions, and spatially-variant graphs, where node positions provide additional information about the graph’s properties. However, there is limited understanding of the effect of spatial variance on the performance of Graph Neural Networks. In this study, we aim to address this issue by comparing the performance of GNNs and CNNs on spatially-variant and spatially-invariant graph data. In the case of spatially-variant graphs, when represented as adjacency matrices, they can exhibit Euclidean-like spatial structure. Based on this distinction, we hypothesize that CNNs may outperform GNNs when working with spatially-variant graphs, while GNNs may excel on spatially-invariant graphs. To test this hypothesis, we compared the performance of CNNs and GNNs under two scenarios: (i) graphs in the training and test sets had the same connectivity pattern and spatial structure, and (ii) graphs in the training and test sets had the same connectivity pattern but different spatial structures. Our results confirmed that the presence of spatial structure in a graph allows for the effective use of CNNs, which may even outperform GNNs. Thus, our study contributes to the understanding of the effect of spatial graph structure on the performance of machine learning methods and allows for the selection of an appropriate algorithm based on the spatial properties of the real-life graph dataset. © 2023 by the authors.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnauka: NSH-589.2022.1.2en
dc.description.sponsorshipThe research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged. A.E.H. also extends thanks to support President Program for Leading Scientific School Support (grant NSH-589.2022.1.2).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceMathematics2
dc.sourceMathematicsen
dc.subjectADJACENCY MATRIXen
dc.subjectCLASSIFICATIONen
dc.subjectCLUSTERINGen
dc.subjectCONVOLUTIONAL NEURAL NETWORK (CNN)en
dc.subjectGRAPH NEURAL NETWORK (GNN)en
dc.subjectGRAPH STRUCTURESen
dc.subjectMODULARITYen
dc.subjectSEGREGATIONen
dc.subjectSPATIAL INVARIANCEen
dc.titleConvolutional Neural Network Outperforms Graph Neural Network on the Spatially Variant Graph Dataen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/math11112515-
dc.identifier.scopus85161461992-
local.contributor.employeeBoronina, A., Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis420500, Russian Federationen
local.contributor.employeeMaksimenko, V., Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis420500, Russian Federation, Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University, Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeHramov, A.E., Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University, Ekaterinburg, 620002, Russian Federation, Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russian Federationen
local.issue11-
local.volume11-
dc.identifier.wos001006288200001-
local.contributor.departmentCenter for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis420500, Russian Federationen
local.contributor.departmentEngineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University, Ekaterinburg, 620002, Russian Federationen
local.contributor.departmentBaltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russian Federationen
local.identifier.pure40606100-
local.description.order2515-
local.identifier.eid2-s2.0-85161461992-
local.identifier.wosWOS:001006288200001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85161461992.pdf3,22 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons