Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130514
Название: Topic-based classification and identification of global trends for startup companies
Авторы: Savin, I.
Chukavina, K.
Pushkarev, A.
Дата публикации: 2023
Издатель: Springer
Библиографическое описание: Savin, I, Chukavina, K & Pushkarev, A 2023, 'Topic-based classification and identification of global trends for startup companies', Small Business Economics, Том. 60, № 2, стр. 659-689. https://doi.org/10.1007/s11187-022-00609-6
Savin, I., Chukavina, K., & Pushkarev, A. (2023). Topic-based classification and identification of global trends for startup companies. Small Business Economics, 60(2), 659-689. https://doi.org/10.1007/s11187-022-00609-6
Аннотация: To foresee global economic trends, one needs to understand the present startup companies that soon may become new market leaders. In this paper, we explore textual descriptions of more than 250 thousand startups in the Crunchbase database. We analyze the 2009–2019 period by using topic modeling. We propose a novel classification of startup companies free from expert bias that contains 38 topics and quantifies the weight of each of these topics for all the startups. Taking the year of establishment and geographical location of the startups into account, we measure which topics were increasing or decreasing their share over time, and which of them were predominantly present in Europe, North America, or other regions. We find that the share of startups focused on data analytics, social platforms, and financial transfers, and time management has risen, while an opposite trend is observed for mobile gaming, online news, and online social networks as well as legal and professional services. We also identify strong regional differences in topic distribution, suggesting certain concentration of the startups. For example, sustainable agriculture is presented stronger in South America and Africa, while pharmaceutics, in North America and Europe. Furthermore, we explore which pairs of topics tend to co-occur more often together, quantify how multisectoral the startups are, and which startup classes attract more investments. Finally, we compare our classification to the one existing in the Crunchbase database, demonstrating how we improve it. © 2022, The Author(s).
Ключевые слова: CRUNCHBASE
ENTREPRENEURSHIP
INVESTMENTS
MACHINE LEARNING
NATURAL LANGUAGE PROCESSING
URI: http://elar.urfu.ru/handle/10995/130514
Условия доступа: info:eu-repo/semantics/openAccess
cc-by
Текст лицензии: https://creativecommons.org/licenses/by/4.0/
Идентификатор SCOPUS: 85126010270
Идентификатор WOS: 000762885300001
Идентификатор PURE: 34723678
ISSN: 0921-898X
DOI: 10.1007/s11187-022-00609-6
Сведения о поддержке: Russian Science Foundation, RSF: 19–18-00262
Open Access Funding provided by Universitat Autonoma de Barcelona. Ivan Savin and Andrey Pushkarev acknowledge support from the Russian Science Foundation (RSF grant number 19–18-00262).
Карточка проекта РНФ: 19-18-00262
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85126010270.pdf3,66 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons