Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130444
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Talantsev, E. F. | en |
dc.date.accessioned | 2024-04-05T16:20:51Z | - |
dc.date.available | 2024-04-05T16:20:51Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Talantsev, EF 2023, 'D-Wave Superconducting Gap Symmetry as a Model for Nb1−xMoxB2 (x = 0.25; 1.0) and WB2 Diborides', Symmetry, Том. 15, № 4, 812. https://doi.org/10.3390/sym15040812 | harvard_pure |
dc.identifier.citation | Talantsev, E. F. (2023). D-Wave Superconducting Gap Symmetry as a Model for Nb1−xMoxB2 (x = 0.25; 1.0) and WB2 Diborides. Symmetry, 15(4), [812]. https://doi.org/10.3390/sym15040812 | apa_pure |
dc.identifier.issn | 2073-8994 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Gold, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85156101919&doi=10.3390%2fsym15040812&partnerID=40&md5=1eff95d9c9831e308b3a21360e01ef5a | 1 |
dc.identifier.other | https://www.mdpi.com/2073-8994/15/4/812/pdf?version=1679909697 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/130444 | - |
dc.description.abstract | Recently, Pei et al. (National Science Review 2023, nwad034, 10.1093/nsr/nwad034) reported that ambient pressure (Formula presented.) -MoB2 (space group: (Formula presented.)) exhibits a phase transition to (Formula presented.) -MoB2 (space group: (Formula presented.)) at pressure P~70 GPa, which is a high-temperature superconductor exhibiting (Formula presented.) at P~110 GPa. Although (Formula presented.) -MoB2 has the same crystalline structure as ambient-pressure MgB2 and the superconducting critical temperatures of (Formula presented.) -MoB2 and MgB2 are very close, the first-principles calculations show that in (Formula presented.) -MoB2, the states near the Fermi level, (Formula presented.), are dominated by the d-electrons of Mo atoms, while in MgB2, the p-orbitals of boron atomic sheets dominantly contribute to the states near the (Formula presented.). Recently, Hire et al. (Phys. Rev. B 2022, 106, 174515) reported that the (Formula presented.) -phase can be stabilized at ambient pressure in Nb1−xMoxB2 solid solutions, and that these ternary alloys exhibit (Formula presented.). Additionally, Pei et al. (Sci. China-Phys. Mech. Astron. 2022, 65, 287412) showed that compressed WB2 exhibited (Formula presented.) at P~121 GPa. Here, we aimed to reveal primary differences/similarities in superconducting state in MgB2 and in its recently discovered diboride counterparts, Nb1−xMoxB2 and highly-compressed WB2. By analyzing experimental data reported for P6/mmm-phases of Nb1−xMoxB2 (x = 0.25; 1.0) and highly compressed WB2, we showed that these three phases exhibit d-wave superconductivity. We deduced (Formula presented.) for (Formula presented.) -MoB2, (Formula presented.) for Nb0.75Mo0.25B2, and (Formula presented.) for WB2. We also found that Nb0.75Mo0.25B2 exhibited high strength of nonadiabaticity, which was quantified by the ratio of (Formula presented.), whereas MgB2, α-MoB2, and WB2 exhibited (Formula presented.), which is similar to the (Formula presented.) in pnictides, A15 alloys, Heusler alloys, Laves phase compounds, cuprates, and highly compressed hydrides. © 2023 by the author. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | MDPI | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.rights | cc-by | other |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | unpaywall |
dc.source | Symmetry | 2 |
dc.source | Symmetry | en |
dc.subject | HIGH-PRESSURE SUPERCONDUCTIVITY | en |
dc.subject | NONADIABATIC SUPERCONDUCTORS | en |
dc.subject | SUPERCONDUCTING DIBORIDES | en |
dc.subject | SUPERCONDUCTING GAP SYMMETRY | en |
dc.title | D-Wave Superconducting Gap Symmetry as a Model for Nb1−xMoxB2 (x = 0.25; 1.0) and WB2 Diborides | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | |info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.3390/sym15040812 | - |
dc.identifier.scopus | 85156101919 | - |
local.contributor.employee | Talantsev, E.F., Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 18, S. Kovalevskoy St, Ekaterinburg, 620108, Russian Federation, NANOTECH Centre, Ural Federal University, 19 Mira St, Ekaterinburg, 620002, Russian Federation | en |
local.issue | 4 | - |
local.volume | 15 | - |
dc.identifier.wos | 000988888600001 | - |
local.contributor.department | Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 18, S. Kovalevskoy St, Ekaterinburg, 620108, Russian Federation | en |
local.contributor.department | NANOTECH Centre, Ural Federal University, 19 Mira St, Ekaterinburg, 620002, Russian Federation | en |
local.identifier.pure | 38493510 | - |
local.description.order | 812 | - |
local.identifier.eid | 2-s2.0-85156101919 | - |
local.identifier.wos | WOS:000988888600001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85156101919.pdf | 4,57 MB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons