Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130435
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKavousi, S.en
dc.contributor.authorAnkudinov, V.en
dc.contributor.authorGalenko, P. K.en
dc.contributor.authorAsle, Zaeem, M.en
dc.date.accessioned2024-04-05T16:20:36Z-
dc.date.available2024-04-05T16:20:36Z-
dc.date.issued2023-
dc.identifier.citationKavousi, S, Ankudinov, V, Galenko, PK & Asle Zaeem, M 2023, 'Atomistic-informed kinetic phase-field modeling of non-equilibrium crystal growth during rapid solidification', Acta Materialia, Том. 253, 118960. https://doi.org/10.1016/j.actamat.2023.118960harvard_pure
dc.identifier.citationKavousi, S., Ankudinov, V., Galenko, P. K., & Asle Zaeem, M. (2023). Atomistic-informed kinetic phase-field modeling of non-equilibrium crystal growth during rapid solidification. Acta Materialia, 253, [118960]. https://doi.org/10.1016/j.actamat.2023.118960apa_pure
dc.identifier.issn1359-6454-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Hybrid Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85154532602&doi=10.1016%2fj.actamat.2023.118960&partnerID=40&md5=4d21e36977ce877c2910895f726b114c1
dc.identifier.otherhttps://doi.org/10.1016/j.actamat.2023.118960pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130435-
dc.description.abstractA novel method based on molecular dynamics (MD) is developed to make the kinetic phase-field (PF) model quantitative in predicting non-equilibrium crystal growth during rapid solidification. MD-calculated variations of the diffuse solid-liquid (SL) interface width versus interface velocity are used to parameterize the kinetic PF model. Two approaches are adopted to study temperature independent and temperature dependent interfacial properties on the accuracy of predictions. MD simulations of slow and rapid solidification regimes for an fcc metal (Ni) show that the SL interface width decreases by increasing the solidification velocity. Fitting the dynamic response of the interface width to the traveling wave solution of hyperbolic PF equation determines the target SL interfacial properties, namely propagation velocity and diffusion coefficient. Independently, the MD calculations of nonlinearity in velocity versus undercooling is used to validate the atomistic-informed kinetic PF model. Both parabolic and kinetic PF models parameterized by temperature-independent material properties can accurately simulate the linear portion of near-equilibrium crystal growth during solidification. However, they both fail to predict the crystal growth kinetics during rapid solidification. The kinetic PF model parameterized with the temperature-dependent SL interfacial properties can accurately predict both the equilibrium and non-equilibrium crystal growth during slow and rapid solidification. MD simulation results on Ni along with some analytical analysis on the variation of interface width versus interface velocity show that for fcc metals, in general, {110} interface has a smaller propagation velocity in comparison to {100} interface, resulting in a larger non-linear behavior at smaller undercooling. © 2023 The Author(s)en
dc.description.sponsorship2031800; National Science Foundation, NSF: TG-DMR140008; Russian Science Foundation, RSF: 21-19-00279en
dc.description.sponsorshipThis study was supported by the National Science Foundation , NSF-CMMI 2031800 , and by Russian Science Foundation under 21-19-00279 . S. Kavousi and M. Asle Zaeem are grateful for the supercomputing time allocation provided by the NSF 's ACCESS (Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support), Award No. TG-DMR140008 .en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherActa Materialia Incen
dc.relationinfo:eu-repo/grantAgreement/RSF//21-19-00279en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceActa Materialia2
dc.sourceActa Materialiaen
dc.subjectKINETIC PHASE-FIELDen
dc.subjectMOLECULAR DYNAMICSen
dc.subjectNON-EQUILIBRIUM CRYSTAL GROWTHen
dc.subjectRAPID SOLIDIFICATIONen
dc.subjectCONTROL NONLINEARITIESen
dc.subjectCRYSTAL GROWTHen
dc.subjectFORECASTINGen
dc.subjectGROWTH KINETICSen
dc.subjectKINETICSen
dc.subjectPHASE INTERFACESen
dc.subjectRAPID SOLIDIFICATIONen
dc.subjectUNDERCOOLINGen
dc.subjectATOMISTICSen
dc.subjectINTERFACE WIDTHSen
dc.subjectINTERFACIAL PROPERTYen
dc.subjectKINETIC PHASEen
dc.subjectKINETIC PHASE-FIELDen
dc.subjectNON EQUILIBRIUMen
dc.subjectNON-EQUILIBRIUM CRYSTAL GROWTHen
dc.subjectPHASE FIELD MODELSen
dc.subjectPHASE FIELDSen
dc.subjectSOLID-LIQUID INTERFACESen
dc.subjectMOLECULAR DYNAMICSen
dc.titleAtomistic-informed kinetic phase-field modeling of non-equilibrium crystal growth during rapid solidificationen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.actamat.2023.118960-
dc.identifier.scopus85154532602-
local.contributor.employeeKavousi, S., Department of Mechanical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401, United Statesen
local.contributor.employeeAnkudinov, V., Theoretical Department, Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, 108840, Russian Federationen
local.contributor.employeeGalenko, P.K., Physikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, Jena, 07743, Germany, Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeAsle Zaeem, M., Department of Mechanical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401, United Statesen
local.volume253-
local.contributor.departmentDepartment of Mechanical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401, United Statesen
local.contributor.departmentTheoretical Department, Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, 108840, Russian Federationen
local.contributor.departmentPhysikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, Jena, 07743, Germanyen
local.contributor.departmentDepartment of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federationen
local.identifier.pure38533701-
local.description.order118960-
local.identifier.eid2-s2.0-85154532602-
local.fund.rsf21-19-00279-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85154532602.pdf6,44 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons