Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130427
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBalyakin, I. A.en
dc.contributor.authorRyltsev, R. E.en
dc.contributor.authorChtchelkatchev, N. M.en
dc.date.accessioned2024-04-05T16:20:20Z-
dc.date.available2024-04-05T16:20:20Z-
dc.date.issued2023-
dc.identifier.citationBalyakin, IA, Ryltsev, RE & Chtchelkatchev, NM 2023, 'Liquid–Crystal Structure Inheritance in Machine Learning Potentials for Network-Forming Systems', JETP Letters, Том. 117, № 5, стр. 370-376. https://doi.org/10.1134/S0021364023600234harvard_pure
dc.identifier.citationBalyakin, I. A., Ryltsev, R. E., & Chtchelkatchev, N. M. (2023). Liquid–Crystal Structure Inheritance in Machine Learning Potentials for Network-Forming Systems. JETP Letters, 117(5), 370-376. https://doi.org/10.1134/S0021364023600234apa_pure
dc.identifier.issn0021-3640-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Hybrid Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85153873071&doi=10.1134%2fS0021364023600234&partnerID=40&md5=0f788a018c768ee9765f2a33f8753a3d1
dc.identifier.otherhttps://link.springer.com/content/pdf/10.1134/S0021364023600234.pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130427-
dc.description.abstractIt has been studied whether machine learning interatomic potentials parameterized with only disordered configurations corresponding to liquid can describe the properties of crystalline phases and predict their structure. The study has been performed for a network-forming system SiO2, which has numerous polymorphic phases significantly different in structure and density. Using only high-temperature disordered configurations, a machine learning interatomic potential based on artificial neural networks (DeePMD model) has been parameterized. The potential reproduces well ab initio dependences of the energy on the volume and the vibrational density of states for all considered tetra- and octahedral crystalline phases of SiO2. Furthermore, the combination of the evolutionary algorithm and the developed DeePMD potential has made it possible to reproduce the really observed crystalline structures of SiO2. Such a good liquid–crystal portability of the machine learning interatomic potential opens prospects for the simulation of the structure and properties of new systems for which experimental information on crystalline phases is absent. © 2023, The Author(s).en
dc.description.sponsorshipRussian Academy of Sciences, РАН; Ural Branch, Russian Academy of Sciences, UB RAS; Russian Science Foundation, RSF: 22-22-00506; National Research Center "Kurchatov Institute", NRC KIen
dc.description.sponsorshipThis study was supported by the Russian Science Foundation (project no. 22-22-00506, https://rscf.ru/project/22-22-00506/ ).en
dc.description.sponsorshipThe numerical calculations were carried out using the Uran supercomputer, Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences; equipment of the Common Access Center Complex for Modeling and Processing of Data of Mega-Class Research Facilities, National Research Center Kurchatov Institute (http://ckp.nrcki.ru/); and computational resources of the Interdisciplinary Computer Center, Russian Academy of Sciences.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherPleiades Publishingen
dc.relationinfo:eu-repo/grantAgreement/RSF//22-22-00506en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceJETP Letters2
dc.sourceJETP Lettersen
dc.titleLiquid–Crystal Structure Inheritance in Machine Learning Potentials for Network-Forming Systemsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1134/S0021364023600234-
dc.identifier.scopus85153873071-
local.contributor.employeeBalyakin, I.A., Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620016, Russian Federation, Research and Education Center Nanomaterials and Nanotechnologies, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeRyltsev, R.E., Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620016, Russian Federationen
local.contributor.employeeChtchelkatchev, N.M., Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620016, Russian Federation, Institute for High Pressure Physics, Russian Academy of Sciences, Moscow, Troitsk, 108840, Russian Federationen
local.description.firstpage370-
local.description.lastpage376-
local.issue5-
local.volume117-
dc.identifier.wos000975208100009-
local.contributor.departmentInstitute of Metallurgy, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620016, Russian Federationen
local.contributor.departmentResearch and Education Center Nanomaterials and Nanotechnologies, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentInstitute for High Pressure Physics, Russian Academy of Sciences, Moscow, Troitsk, 108840, Russian Federationen
local.identifier.pure38478042-
local.identifier.eid2-s2.0-85153873071-
local.fund.rsf22-22-00506-
local.identifier.wosWOS:000975208100009-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85153873071.pdf1,27 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons