Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130419
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Burmasheva, N. | en |
dc.contributor.author | Ershkov, S. | en |
dc.contributor.author | Prosviryakov, E. | en |
dc.contributor.author | Leshchenko, D. | en |
dc.date.accessioned | 2024-04-05T16:20:10Z | - |
dc.date.available | 2024-04-05T16:20:10Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Burmasheva, N, Ershkov, S, Prosviryakov, E & Leshchenko, D 2023, 'Exact Solutions of Navier–Stokes Equations for Quasi-Two-Dimensional Flows with Rayleigh Friction', Fluids, Том. 8, № 4, 123. https://doi.org/10.3390/fluids8040123 | harvard_pure |
dc.identifier.citation | Burmasheva, N., Ershkov, S., Prosviryakov, E., & Leshchenko, D. (2023). Exact Solutions of Navier–Stokes Equations for Quasi-Two-Dimensional Flows with Rayleigh Friction. Fluids, 8(4), [123]. https://doi.org/10.3390/fluids8040123 | apa_pure |
dc.identifier.issn | 2311-5521 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Gold | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153745747&doi=10.3390%2ffluids8040123&partnerID=40&md5=e75946ea66fc17e57853a6f3fc4893d5 | 1 |
dc.identifier.other | https://www.mdpi.com/2311-5521/8/4/123/pdf?version=1680513447 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/130419 | - |
dc.description.abstract | To solve the problems of geophysical hydrodynamics, it is necessary to integrally take into account the unevenness of the bottom and the free boundary for a large-scale flow of a viscous incompressible fluid. The unevenness of the bottom can be taken into account by setting a new force in the Navier–Stokes equations (the Rayleigh friction force). For solving problems of geophysical hydrodynamics, the velocity field is two-dimensional. In fact, a model representation of a thin (bottom) baroclinic layer is used. Analysis of such flows leads to the redefinition of the system of equations. A compatibility condition is constructed, the fulfillment of which guarantees the existence of a nontrivial solution of the overdetermined system under consideration. A non-trivial exact solution of the overdetermined system is found in the class of Lin–Sidorov–Aristov exact solutions. In this case, the flow velocities are described by linear forms from horizontal (longitudinal) coordinates. Several variants of the pressure representation that do not contradict the form of the equation system are considered. The article presents an algebraic condition for the existence of a non-trivial exact solution with functional arbitrariness for the Lin–Sidorov–Aristov class. The isobaric and gradient flows of a viscous incompressible fluid are considered in detail. © 2023 by the authors. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | MDPI | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.rights | cc-by | other |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | unpaywall |
dc.source | Fluids | 2 |
dc.source | Fluids | en |
dc.subject | EXACT SOLUTIONS | en |
dc.subject | GRADIENT FLOWS | en |
dc.subject | ISOBARIC FLOWS | en |
dc.subject | KOLMOGOROV FLOW | en |
dc.subject | NAVIER–STOKES EQUATIONS | en |
dc.subject | OVERDETERMINED SYSTEM | en |
dc.subject | RAYLEIGH FRICTION | en |
dc.subject | SOLVABILITY CONDITION | en |
dc.title | Exact Solutions of Navier–Stokes Equations for Quasi-Two-Dimensional Flows with Rayleigh Friction | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | |info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.3390/fluids8040123 | - |
dc.identifier.scopus | 85153745747 | - |
local.contributor.employee | Burmasheva, N., Institute of Engineering Science, UB RAS, Ural Federal University, Ekaterinburg, 620049, Russian Federation | en |
local.contributor.employee | Ershkov, S., Department of Scientific Researches, Plekhanov Russian University of Economics, Scopus Number 60030998, 36 Stremyanny Lane, Moscow, 117997, Russian Federation | en |
local.contributor.employee | Prosviryakov, E., Institute of Engineering Science, UB RAS, Ural Federal University, Ekaterinburg, 620049, Russian Federation | en |
local.contributor.employee | Leshchenko, D., Odessa State Academy of Civil Engineering and Architecture, Odessa, 65029, Ukraine | en |
local.issue | 4 | - |
local.volume | 8 | - |
dc.identifier.wos | 000977490300001 | - |
local.contributor.department | Institute of Engineering Science, UB RAS, Ural Federal University, Ekaterinburg, 620049, Russian Federation | en |
local.contributor.department | Department of Scientific Researches, Plekhanov Russian University of Economics, Scopus Number 60030998, 36 Stremyanny Lane, Moscow, 117997, Russian Federation | en |
local.contributor.department | Odessa State Academy of Civil Engineering and Architecture, Odessa, 65029, Ukraine | en |
local.identifier.pure | 38492248 | - |
local.description.order | 123 | - |
local.identifier.eid | 2-s2.0-85153745747 | - |
local.identifier.wos | WOS:000977490300001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85153745747.pdf | 918,25 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons