Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130419
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBurmasheva, N.en
dc.contributor.authorErshkov, S.en
dc.contributor.authorProsviryakov, E.en
dc.contributor.authorLeshchenko, D.en
dc.date.accessioned2024-04-05T16:20:10Z-
dc.date.available2024-04-05T16:20:10Z-
dc.date.issued2023-
dc.identifier.citationBurmasheva, N, Ershkov, S, Prosviryakov, E & Leshchenko, D 2023, 'Exact Solutions of Navier–Stokes Equations for Quasi-Two-Dimensional Flows with Rayleigh Friction', Fluids, Том. 8, № 4, 123. https://doi.org/10.3390/fluids8040123harvard_pure
dc.identifier.citationBurmasheva, N., Ershkov, S., Prosviryakov, E., & Leshchenko, D. (2023). Exact Solutions of Navier–Stokes Equations for Quasi-Two-Dimensional Flows with Rayleigh Friction. Fluids, 8(4), [123]. https://doi.org/10.3390/fluids8040123apa_pure
dc.identifier.issn2311-5521-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85153745747&doi=10.3390%2ffluids8040123&partnerID=40&md5=e75946ea66fc17e57853a6f3fc4893d51
dc.identifier.otherhttps://www.mdpi.com/2311-5521/8/4/123/pdf?version=1680513447pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130419-
dc.description.abstractTo solve the problems of geophysical hydrodynamics, it is necessary to integrally take into account the unevenness of the bottom and the free boundary for a large-scale flow of a viscous incompressible fluid. The unevenness of the bottom can be taken into account by setting a new force in the Navier–Stokes equations (the Rayleigh friction force). For solving problems of geophysical hydrodynamics, the velocity field is two-dimensional. In fact, a model representation of a thin (bottom) baroclinic layer is used. Analysis of such flows leads to the redefinition of the system of equations. A compatibility condition is constructed, the fulfillment of which guarantees the existence of a nontrivial solution of the overdetermined system under consideration. A non-trivial exact solution of the overdetermined system is found in the class of Lin–Sidorov–Aristov exact solutions. In this case, the flow velocities are described by linear forms from horizontal (longitudinal) coordinates. Several variants of the pressure representation that do not contradict the form of the equation system are considered. The article presents an algebraic condition for the existence of a non-trivial exact solution with functional arbitrariness for the Lin–Sidorov–Aristov class. The isobaric and gradient flows of a viscous incompressible fluid are considered in detail. © 2023 by the authors.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceFluids2
dc.sourceFluidsen
dc.subjectEXACT SOLUTIONSen
dc.subjectGRADIENT FLOWSen
dc.subjectISOBARIC FLOWSen
dc.subjectKOLMOGOROV FLOWen
dc.subjectNAVIER–STOKES EQUATIONSen
dc.subjectOVERDETERMINED SYSTEMen
dc.subjectRAYLEIGH FRICTIONen
dc.subjectSOLVABILITY CONDITIONen
dc.titleExact Solutions of Navier–Stokes Equations for Quasi-Two-Dimensional Flows with Rayleigh Frictionen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/fluids8040123-
dc.identifier.scopus85153745747-
local.contributor.employeeBurmasheva, N., Institute of Engineering Science, UB RAS, Ural Federal University, Ekaterinburg, 620049, Russian Federationen
local.contributor.employeeErshkov, S., Department of Scientific Researches, Plekhanov Russian University of Economics, Scopus Number 60030998, 36 Stremyanny Lane, Moscow, 117997, Russian Federationen
local.contributor.employeeProsviryakov, E., Institute of Engineering Science, UB RAS, Ural Federal University, Ekaterinburg, 620049, Russian Federationen
local.contributor.employeeLeshchenko, D., Odessa State Academy of Civil Engineering and Architecture, Odessa, 65029, Ukraineen
local.issue4-
local.volume8-
dc.identifier.wos000977490300001-
local.contributor.departmentInstitute of Engineering Science, UB RAS, Ural Federal University, Ekaterinburg, 620049, Russian Federationen
local.contributor.departmentDepartment of Scientific Researches, Plekhanov Russian University of Economics, Scopus Number 60030998, 36 Stremyanny Lane, Moscow, 117997, Russian Federationen
local.contributor.departmentOdessa State Academy of Civil Engineering and Architecture, Odessa, 65029, Ukraineen
local.identifier.pure38492248-
local.description.order123-
local.identifier.eid2-s2.0-85153745747-
local.identifier.wosWOS:000977490300001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85153745747.pdf918,25 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons