Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130417
Название: | Canards Oscillations, Noise-Induced Splitting of Cycles and Transition to Chaos in Thermochemical Kinetics |
Авторы: | Bashkirtseva, I. Ivanenko, G. Mordovskikh, D. Ryashko, L. |
Дата публикации: | 2023 |
Издатель: | MDPI |
Библиографическое описание: | Bashkirtseva, I, Ivanenko, G, Mordovskikh, D & Ryashko, L 2023, 'Canards Oscillations, Noise-Induced Splitting of Cycles and Transition to Chaos in Thermochemical Kinetics', Mathematics, Том. 11, № 8, 1918. https://doi.org/10.3390/math11081918 Bashkirtseva, I., Ivanenko, G., Mordovskikh, D., & Ryashko, L. (2023). Canards Oscillations, Noise-Induced Splitting of Cycles and Transition to Chaos in Thermochemical Kinetics. Mathematics, 11(8), [1918]. https://doi.org/10.3390/math11081918 |
Аннотация: | We study how noise generates complex oscillatory regimes in the nonlinear thermochemical kinetics. In this study, the basic mathematical Zeldovich–Semenov model is used as a deterministic skeleton. We investigate the stochastic version of this model that takes into account multiplicative random fluctuations of temperature. In our study, we use direct numerical simulation of stochastic solutions with the subsequent statistical analysis of probability densities and Lyapunov exponents. In the parametric zone of Canard cycles, qualitative effects caused by random noise are identified and investigated. Stochastic P-bifurcations corresponding to noise-induced splitting of Canard oscillations are parametrically described. It is shown that such P-bifurcations are associated with splitting of both amplitudes and frequencies. Studying stochastic D-bifurcations, we localized the rather narrow parameter zone where transitions from order to chaos occur. © 2023 by the authors. |
Ключевые слова: | CANARD CYCLES CHAOS STOCHASTIC BIFURCATIONS STOCHASTIC SPLITTING THERMOCHEMICAL OSCILLATIONS |
URI: | http://elar.urfu.ru/handle/10995/130417 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
Идентификатор SCOPUS: | 85153732048 |
Идентификатор WOS: | 000977328000001 |
Идентификатор PURE: | 38533471 |
ISSN: | 2227-7390 |
DOI: | 10.3390/math11081918 |
Сведения о поддержке: | Russian Science Foundation, RSF: N 23-21-00042 The work was supported by the Russian Science Foundation (N 23-21-00042). |
Карточка проекта РНФ: | 23-21-00042 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85153732048.pdf | 4,54 MB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons