Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130408
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorPruzhinskaya, M. V.en
dc.contributor.authorIshida, E. E. O.en
dc.contributor.authorNovinskaya, A. K.en
dc.contributor.authorRusseil, E.en
dc.contributor.authorVolnova, A. A.en
dc.contributor.authorMalanchev, K. L.en
dc.contributor.authorKornilov, M. V.en
dc.contributor.authorAleo, P. D.en
dc.contributor.authorKorolev, V. S.en
dc.contributor.authorKrushinsky, V. V.en
dc.contributor.authorSreejith, S.en
dc.contributor.authorGangler, E.en
dc.date.accessioned2024-04-05T16:19:54Z-
dc.date.available2024-04-05T16:19:54Z-
dc.date.issued2023-
dc.identifier.citationPruzhinskaya, MV, Ishida, EEO, Novinskaya, AK, Russeil, E, Volnova, AA, Malanchev, KL, Kornilov, MV, Aleo, PD, Korolev, VS, Krushinsky, VV, Sreejith, S & Gangler, E 2023, 'Supernova search with active learning in ZTF DR3', Astronomy and Astrophysics, Том. 672, A111. https://doi.org/10.1051/0004-6361/202245172harvard_pure
dc.identifier.citationPruzhinskaya, M. V., Ishida, E. E. O., Novinskaya, A. K., Russeil, E., Volnova, A. A., Malanchev, K. L., Kornilov, M. V., Aleo, P. D., Korolev, V. S., Krushinsky, V. V., Sreejith, S., & Gangler, E. (2023). Supernova search with active learning in ZTF DR3. Astronomy and Astrophysics, 672, [A111]. https://doi.org/10.1051/0004-6361/202245172apa_pure
dc.identifier.issn0004-6361-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Hybrid Gold, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85153368223&doi=10.1051%2f0004-6361%2f202245172&partnerID=40&md5=350b60a8a6014fd9884eb03cf432c5001
dc.identifier.otherhttps://www.aanda.org/articles/aa/pdf/2023/04/aa45172-22.pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130408-
dc.description.abstractContext. We provide the first results from the complete SNAD adaptive learning pipeline in the context of a broad scope of data from large-scale astronomical surveys. Aims. The main goal of this work is to explore the potential of adaptive learning techniques in application to big data sets. Methods. Our SNAD team used Active Anomaly Discovery (AAD) as a tool to search for new supernova (SN) candidates in the photometric data from the first 9.4 months of the Zwicky Transient Facility (ZTF) survey, namely, between March 17 and December 31, 2018 (58 194 ≤ MJD ≤ 58 483). We analysed 70 ZTF fields at a high galactic latitude and visually inspected 2100 outliers. Results. This resulted in 104 SN-like objects being found, 57 of which were reported to the Transient Name Server for the first time and with 47 having previously been mentioned in other catalogues, either as SNe with known types or as SN candidates. We visually inspected the multi-colour light curves of the non-catalogued transients and performed fittings with different supernova models to assign it to a probable photometric class: Ia, Ib/c, IIP, IIL, or IIn. Moreover, we also identified unreported slow-evolving transients that are good superluminous SN candidates, along with a few other non-catalogued objects, such as red dwarf flares and active galactic nuclei. Conclusions. Beyond confirming the effectiveness of human-machine integration underlying the AAD strategy, our results shed light on potential leaks in currently available pipelines. These findings can help avoid similar losses in future large-scale astronomical surveys. Furthermore, the algorithm enables direct searches of any type of data and based on any definition of an anomaly set by the expert. © The Authors 2023.en
dc.description.sponsorshipRussian Foundation for Basic Research, РФФИ; Ministry of Education and Science of the Russian Federation, Minobrnauka: FEUZ-2020-0038; Centre National de la Recherche Scientifique, CNRS: 21-52-15024; Lomonosov Moscow State University, MSUen
dc.description.sponsorshipWe thank Anastasia Voloshina and Alexandra Zubareva for the assistance in variable star classification and analysis. We also thank Stephane Blodin and Alexandra Kozyreva for discussion involving PISN modelling. The reported study was funded by RFBR and CNRS according to the research project 𝒩o. 21-52-15024. We used the equipment funded by the Lomonosov Moscow State University Program of Development. The authors acknowledge the support by the Interdisciplinary Scientific and Educational School of Moscow University “Fundamental and Applied Space Research”. P.D.A. is supported by the Center for Astrophysical Surveys (CAPS) at the National Center for Supercomputing Applications (NCSA) as an Illinois Survey Science Graduate Fellow. V.V.K. is supported by the Ministry of science and higher education of Russian Federation, topic no. FEUZ-2020-0038. E.E.O.I. received financial support from CNRS International Emerging Actions under the project Real-time analysis of astronomical data for the Legacy Survey of Space and Time during 2021-2022.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherEDP Sciencesen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceAstronomy & Astrophysics2
dc.sourceAstronomy and Astrophysicsen
dc.subjectMETHODS: DATA ANALYSISen
dc.subjectSUPERNOVAE: GENERALen
dc.subjectSURVEYSen
dc.subjectGALAXIESen
dc.subjectLEARNING SYSTEMSen
dc.subjectPHOTOMETRYen
dc.subjectPIPELINESen
dc.subjectACTIVE LEARNINGen
dc.subjectADAPTIVE LEARNINGen
dc.subjectASTRONOMICAL SURVEYSen
dc.subjectDATA SETen
dc.subjectGALACTIC LATITUDEen
dc.subjectLARGE-SCALESen
dc.subjectLEARNING TECHNIQUESen
dc.subjectMETHODS. DATA ANALYSISen
dc.subjectPHOTOMETRIC DATAen
dc.subjectSUPERNOVAE: GENERALen
dc.subjectSUPERNOVAEen
dc.titleSupernova search with active learning in ZTF DR3en
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1051/0004-6361/202245172-
dc.identifier.scopus85153368223-
local.contributor.employeePruzhinskaya, M.V., Université Clermont Auvergne, CNRS/IN2P3, LPC, 4 Avenue Blaise Pascal, Clermont-Ferrand, 63000, France, Lomonosov Moscow State University, Sternberg astronomical institute, Universitetsky pr. 13, Moscow, 119234, Russian Federationen
local.contributor.employeeIshida, E.E.O., Université Clermont Auvergne, CNRS/IN2P3, LPC, 4 Avenue Blaise Pascal, Clermont-Ferrand, 63000, Franceen
local.contributor.employeeNovinskaya, A.K., Lomonosov Moscow State University, Sternberg astronomical institute, Universitetsky pr. 13, Moscow, 119234, Russian Federationen
local.contributor.employeeRusseil, E., Université Clermont Auvergne, CNRS/IN2P3, LPC, 4 Avenue Blaise Pascal, Clermont-Ferrand, 63000, Franceen
local.contributor.employeeVolnova, A.A., Space Research Institute of the Russian Academy of Sciences (IKI), 84/32 Profsoyuznaya Street, Moscow, 117997, Russian Federationen
local.contributor.employeeMalanchev, K.L., Lomonosov Moscow State University, Sternberg astronomical institute, Universitetsky pr. 13, Moscow, 119234, Russian Federation, Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801, United Statesen
local.contributor.employeeKornilov, M.V., Lomonosov Moscow State University, Sternberg astronomical institute, Universitetsky pr. 13, Moscow, 119234, Russian Federation, National Research University Higher School of Economics, 21/4 Staraya Basmannaya Ulitsa, Moscow, 105066, Russian Federationen
local.contributor.employeeAleo, P.D., Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801, United States, Center for AstroPhysical Surveys (CAPS), National Center for Supercomputing Applications, 1205 West Clark Street, Urbana, IL 61801, United Statesen
local.contributor.employeeKorolev, V.S., Independent researcher, Sovetskaya st. 6, Moscow region, Zhukovsky, 140185, Russian Federationen
local.contributor.employeeKrushinsky, V.V., Laboratory of Astrochemical Research, Ural Federal University, Ul. Mira d. 19, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeSreejith, S., Physics Department, Brookhaven National Laboratory, 98 Rochester St, Upton, NY 11973, United Statesen
local.contributor.employeeGangler, E., Université Clermont Auvergne, CNRS/IN2P3, LPC, 4 Avenue Blaise Pascal, Clermont-Ferrand, 63000, Franceen
local.volume672-
dc.identifier.wos000967616600006-
local.contributor.departmentUniversité Clermont Auvergne, CNRS/IN2P3, LPC, 4 Avenue Blaise Pascal, Clermont-Ferrand, 63000, Franceen
local.contributor.departmentLomonosov Moscow State University, Sternberg astronomical institute, Universitetsky pr. 13, Moscow, 119234, Russian Federationen
local.contributor.departmentSpace Research Institute of the Russian Academy of Sciences (IKI), 84/32 Profsoyuznaya Street, Moscow, 117997, Russian Federationen
local.contributor.departmentDepartment of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801, United Statesen
local.contributor.departmentNational Research University Higher School of Economics, 21/4 Staraya Basmannaya Ulitsa, Moscow, 105066, Russian Federationen
local.contributor.departmentCenter for AstroPhysical Surveys (CAPS), National Center for Supercomputing Applications, 1205 West Clark Street, Urbana, IL 61801, United Statesen
local.contributor.departmentIndependent researcher, Sovetskaya st. 6, Moscow region, Zhukovsky, 140185, Russian Federationen
local.contributor.departmentLaboratory of Astrochemical Research, Ural Federal University, Ul. Mira d. 19, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentPhysics Department, Brookhaven National Laboratory, 98 Rochester St, Upton, NY 11973, United Statesen
local.identifier.pure38474797-
local.description.orderA111-
local.identifier.eid2-s2.0-85153368223-
local.identifier.wosWOS:000967616600006-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85153368223.pdf5,35 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons