Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130399
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBerestova, S. A.en
dc.contributor.authorProsviryakov, E. Yu.en
dc.date.accessioned2024-04-05T16:19:46Z-
dc.date.available2024-04-05T16:19:46Z-
dc.date.issued2023-
dc.identifier.citationBerestova, SA & Prosviryakov, EY 2023, 'An Inhomogeneous Steady-State Convection of a Vertical Vortex Fluid', Russian Journal of Nonlinear Dynamics, Том. 19, № 2, стр. 167-186. https://doi.org/10.20537/nd230201harvard_pure
dc.identifier.citationBerestova, S. A., & Prosviryakov, E. Y. (2023). An Inhomogeneous Steady-State Convection of a Vertical Vortex Fluid. Russian Journal of Nonlinear Dynamics, 19(2), 167-186. https://doi.org/10.20537/nd230201apa_pure
dc.identifier.issn2658-5324-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85152799184&doi=10.20537%2fnd230201&partnerID=40&md5=da74957befe1ddd15e3af760f152d3cc1
dc.identifier.otherhttp://nd.ics.org.ru/upload/iblock/2b0/nd230201.pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130399-
dc.description.abstractAn exact solution of the Oberbeck – Boussinesq equations for the description of the steady-state Bénard – Rayleigh convection in an infinitely extensive horizontal layer is presented. This exact solution describes the large-scale motion of a vertical vortex flow outside the field of the Coriolis force. The large-scale fluid flow is considered in the approximation of a thin layer with nondeformable (flat) boundaries. This assumption allows us to describe the large-scale fluid motion as shear motion. Two velocity vector components, called horizontal components, are taken into account. Consequently, the third component of the velocity vector (the vertical velocity) is zero. The shear flow of the vertical vortex flow is described by linear forms from the horizontal coordinates for velocity, temperature and pressure fields. The topology of the steady flow of a viscous incompressible fluid is defined by coefficients of linear forms which have a dependence on the vertical (transverse) coordinate. The functions unknown in advance are exactly defined from the system of ordinary differential equations of order fifteen. The coefficients of the forms are polynomials. The spectral properties of the polynomials in the domain of definition of the solution are investigated. The analysis of distribution of the zeroes of hydrodynamical fields has allowed a definition of the stratification of the physical fields. The paper presents a detailed study of the existence of steady reverse flows in the convective fluid flow of Bénard – Rayleigh – Couette type. © 2023 Institute of Computer Science Izhevsk. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherInstitute of Computer Science Izhevsken
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-by-ndother
dc.rights.urihttps://creativecommons.org/licenses/by-nd/4.0/unpaywall
dc.sourceNelineinaya Dinamika2
dc.sourceRussian Journal of Nonlinear Dynamicsen
dc.subjectARISTOV SOLUTIONSen
dc.subjectBOUSSINESQ SYSTEMen
dc.subjectCLASS OF LINen
dc.subjectCONVECTIONen
dc.subjectEXACT SOLUTIONen
dc.subjectINHOMOGENEOUS FLOWen
dc.subjectOBERBECKen
dc.subjectREVERSE FLOWen
dc.subjectSHEAR FLOWen
dc.subjectSIDOROVen
dc.subjectSTRATIFICATIONen
dc.subjectVERTICAL SWIRL OF FLUIDen
dc.titleAn Inhomogeneous Steady-State Convection of a Vertical Vortex Fluiden
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.rsi54237550-
dc.identifier.doi10.20537/nd230201-
dc.identifier.scopus85152799184-
local.contributor.employeeBerestova, S.A., Ural Federal University, ul. Mira 19, Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeProsviryakov, E.Yu., Ural Federal University, ul. Mira 19, Ekaterinburg, 620002, Russian Federation, Institute of Engineering Science of Ural Branch, The Russian Academy of Sciences, ul. Komsomolskaya 34, Ekaterinburg, 620049, Russian Federationen
local.description.firstpage1-
local.description.lastpage20-
local.issue1-
local.volume19-
local.contributor.departmentUral Federal University, ul. Mira 19, Ekaterinburg, 620002, Russian Federationen
local.contributor.departmentInstitute of Engineering Science of Ural Branch, The Russian Academy of Sciences, ul. Komsomolskaya 34, Ekaterinburg, 620049, Russian Federationen
local.identifier.pure37492236-
local.identifier.eid2-s2.0-85152799184-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85152799184.pdf757,14 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons