Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130374
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorHuang, Y.en
dc.contributor.authorZhang, L.en
dc.contributor.authorJing, R.en
dc.contributor.authorShi, W.en
dc.contributor.authorAlikin, D.en
dc.contributor.authorShur, V.en
dc.contributor.authorWei, X.en
dc.contributor.authorJin, L.en
dc.date.accessioned2024-04-05T16:19:08Z-
dc.date.available2024-04-05T16:19:08Z-
dc.date.issued2023-
dc.identifier.citationHuang, Y, Zhang, L, Jing, R, Shi, W, Alikin, D, Shur, V, Wei, X & Jin, L 2023, 'Phase evolution and strong temperature-dependent electrostrictive effect in (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 solid solutions', Journal of the American Ceramic Society, Том. 106, № 8, стр. 4709-4722. https://doi.org/10.1111/jace.19104, https://doi.org/10.1111/jace.v106.8harvard_pure
dc.identifier.citationHuang, Y., Zhang, L., Jing, R., Shi, W., Alikin, D., Shur, V., Wei, X., & Jin, L. (2023). Phase evolution and strong temperature-dependent electrostrictive effect in (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 solid solutions. Journal of the American Ceramic Society, 106(8), 4709-4722. https://doi.org/10.1111/jace.19104, https://doi.org/10.1111/jace.v106.8apa_pure
dc.identifier.issn0002-7820-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85152017180&doi=10.1111%2fjace.19104&partnerID=40&md5=0f339361e2419bc70f6181b9dd6a43f11
dc.identifier.otherhttps://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jace.19104pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130374-
dc.description.abstract(1−x)Pb(Mg1/3Nb2/3)-xPbTiO3 (PMN-xPT) ceramics with x ranging from 0.1 to 0.3 were synthesized by solid-state reaction method. X-ray diffraction, dielectric and ferroelectric property characterizations were systematically investigated. As x rises, the PMN-xPT transitions from a cubic to a rhombohedral phase, resulting in an enhancement in ferroelectricity. Our findings show that the electrostrain and longitudinal electrostrictive coefficient Q33 both increase and then decrease within a critical region located between the depolarization temperature TFR and Tm (corresponding to the maximum permittivity), demonstrating strong temperature-dependent characteristics. In x = 0.2, the maximum Q33 of 0.0361 m4/C2 is obtained, and a phase diagram of studied system is built. Our findings not only shed light on the phase evolution in this system but also reveal a strong temperature-dependent electrostrictive effect that can be used to improve electrostrains in PMN-based solid solutions if the critical region can be regulated to a suitable temperature region using engineering strategies. © 2023 The American Ceramic Society.en
dc.description.sponsorshipNational Natural Science Foundation of China, NSFC: 52172127, 52261135548; Xi’an Jiaotong University, XJTU; Russian Science Foundation, RSF: 23‐42‐00116, 2968; Ministry of Science and Higher Education of the Russian Federation: 075‐15‐2021‐677; Key Research and Development Projects of Shaanxi Province: 2022KWZ‐22en
dc.description.sponsorshipThis work was financially supported by the National Natural Science Foundation of China (grant number: 52172127 and 52261135548), the Key Research and Development Program of Shaanxi (program number: 2022KWZ‐22). The research was made possible by Russian Science Foundation (project number: 23‐42‐00116). The equipment of the Ural Center for Shared Use “Modern nanotechnology” Ural Federal University (reg. number: 2968), which is supported by the Ministry of Science and Higher Education RF (project number: 075‐15‐2021‐677), was used. The SEM work was done at International Center for Dielectric Research (ICDR), Xi'an Jiaotong University, Xi'an, China.en
dc.description.sponsorshipThis work was financially supported by the National Natural Science Foundation of China (grant number: 52172127 and 52261135548), the Key Research and Development Program of Shaanxi (program number: 2022KWZ-22). The research was made possible by Russian Science Foundation (project number: 23-42-00116). The equipment of the Ural Center for Shared Use “Modern nanotechnology” Ural Federal University (reg. number: 2968), which is supported by the Ministry of Science and Higher Education RF (project number: 075-15-2021-677), was used. The SEM work was done at International Center for Dielectric Research (ICDR), Xi'an Jiaotong University, Xi'an, China.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherJohn Wiley and Sons Incen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceJournal of the American Ceramic Society2
dc.sourceJournal of the American Ceramic Societyen
dc.subjectELECTROSTRICTIONen
dc.subjectELECTROSTRICTIVE COEFFICIENTen
dc.subjectPHASE EVOLUTIONen
dc.subjectPMN-XPTen
dc.subjectRELAXOR FERROELECTRICen
dc.subjectELECTROSTRICTIONen
dc.subjectFERROELECTRIC MATERIALSen
dc.subjectFERROELECTRICITYen
dc.subjectSOLID STATE REACTIONSen
dc.subject(1−X)PB(MG1/3NB2/3)-XPBTIO3en
dc.subjectCRITICAL REGIONen
dc.subjectELECTROSTRAINen
dc.subjectELECTROSTRICTIVE COEFFICIENTSen
dc.subjectELECTROSTRICTIVE EFFECTSen
dc.subjectPHASE EVOLUTIONSen
dc.subjectRELAXOR FERROELECTRICen
dc.subjectSOLID STATE REACTION METHODen
dc.subjectSYNTHESISEDen
dc.subjectTEMPERATURE DEPENDENTen
dc.subjectSOLID SOLUTIONSen
dc.titlePhase evolution and strong temperature-dependent electrostrictive effect in (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 solid solutionsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1111/jace.19104-
dc.identifier.scopus85152017180-
local.contributor.employeeHuang, Y., Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Chinaen
local.contributor.employeeZhang, L., Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Chinaen
local.contributor.employeeJing, R., Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Chinaen
local.contributor.employeeShi, W., Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Chinaen
local.contributor.employeeAlikin, D., School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federationen
local.contributor.employeeShur, V., School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federationen
local.contributor.employeeWei, X., Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Chinaen
local.contributor.employeeJin, L., Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Chinaen
local.description.firstpage4709-
local.description.lastpage4722-
local.issue8-
local.volume106-
dc.identifier.wos000961623800001-
local.contributor.departmentElectronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Chinaen
local.contributor.departmentSchool of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federationen
local.identifier.pure40054522-
local.identifier.eid2-s2.0-85152017180-
local.fund.rsf23-42-00116-
local.identifier.wosWOS:000961623800001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85152017180.pdf6,8 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.