Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130372
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorManusov, V.en
dc.contributor.authorMatrenin, P.en
dc.contributor.authorNazarov, M.en
dc.contributor.authorBeryozkina, S.en
dc.contributor.authorSafaraliev, M.en
dc.contributor.authorZicmane, I.en
dc.contributor.authorGhulomzoda, A.en
dc.date.accessioned2024-04-05T16:19:03Z-
dc.date.available2024-04-05T16:19:03Z-
dc.date.issued2023-
dc.identifier.citationManusov, V, Matrenin, P, Nazarov, M, Beryozkina, S, Safaraliev, M, Zicmane, I & Ghulomzoda, A 2023, 'Short-Term Prediction of the Wind Speed Based on a Learning Process Control Algorithm in Isolated Power Systems', Sustainability, Том. 15, № 2, 1730. https://doi.org/10.3390/su15021730harvard_pure
dc.identifier.citationManusov, V., Matrenin, P., Nazarov, M., Beryozkina, S., Safaraliev, M., Zicmane, I., & Ghulomzoda, A. (2023). Short-Term Prediction of the Wind Speed Based on a Learning Process Control Algorithm in Isolated Power Systems. Sustainability, 15(2), [1730]. https://doi.org/10.3390/su15021730apa_pure
dc.identifier.issn2071-1050-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85151942779&doi=10.3390%2fsu15021730&partnerID=40&md5=1a8681950dc55de7c7b0f66bf59b55321
dc.identifier.otherhttps://www.mdpi.com/2071-1050/15/2/1730/pdf?version=1674006146pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130372-
dc.description.abstractPredicting the variability of wind energy resources at different time scales is extremely important for effective energy management. The need to obtain the most accurate forecast of wind speed due to its high degree of volatility is particularly acute since this can significantly improve the planning of wind energy production, reduce costs and improve the use of resources. In this study, a method for predicting the speed of wind flow in an isolated power system of the Gorno-Badakhshan Autonomous Oblast (GBAO), based on the use of a neural network with a learning process control algorithm, is proposed. Predicting is performed for four seasons of the year, based on hourly retrospective meteorological data of wind speed observations. The obtained wind speed average error forecasting ranged from 20–28% for a day ahead. The prediction results serve as a basis for optimizing the energy consumption of individual generating consumers to minimize their financial and technical costs. In addition, this study takes into account the possibility of exporting electricity to a neighboring country as an additional income line for the isolated GBAO power system during periods of excess energy from hydropower plants (March–September), which is a systematic vision of solving the problem of improving energy efficiency in the conditions of autonomous power supply. © 2023 by the authors. Licensee MDPI, Basel, Switzerland.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnaukaen
dc.description.sponsorshipThe contribution of P.V. Matrenin to the research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceSustainability2
dc.sourceSustainability (Switzerland)en
dc.subjectISOLATED POWER SYSTEMen
dc.subjectNEURAL NETWORKSen
dc.subjectPREDICTIONen
dc.subjectWIND SPEEDen
dc.subjectALGORITHMen
dc.subjectARTIFICIAL NEURAL NETWORKen
dc.subjectENERGY EFFICIENCYen
dc.subjectFUEL CONSUMPTIONen
dc.subjectPREDICTIONen
dc.subjectWIND VELOCITYen
dc.subjectAFGHANISTANen
dc.subjectBADAKHSHANen
dc.titleShort-Term Prediction of the Wind Speed Based on a Learning Process Control Algorithm in Isolated Power Systemsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/su15021730-
dc.identifier.scopus85151942779-
local.contributor.employeeManusov, V., Department of Power Supply Systems, Novosibirsk State Technical University, 20 K. Marx Ave., Novosibirsk, 630073, Russian Federationen
local.contributor.employeeMatrenin, P., Ural Power Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeNazarov, M., Department of Power Supply Systems, Novosibirsk State Technical University, 20 K. Marx Ave., Novosibirsk, 630073, Russian Federationen
local.contributor.employeeBeryozkina, S., College of Engineering and Technology, American University of the Middle East, Kuwaiten
local.contributor.employeeSafaraliev, M., Department of Automated Electrical Systems, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeZicmane, I., Faculty of Electrical and Environmental Engineering, Riga Technical University, 12/1 Azenes Str., Riga, 1048, Latviaen
local.contributor.employeeGhulomzoda, A., Department of Automated Electric Power Systems, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federationen
local.issue2-
local.volume15-
dc.identifier.wos000925094400001-
local.contributor.departmentDepartment of Power Supply Systems, Novosibirsk State Technical University, 20 K. Marx Ave., Novosibirsk, 630073, Russian Federationen
local.contributor.departmentUral Power Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentCollege of Engineering and Technology, American University of the Middle East, Kuwaiten
local.contributor.departmentDepartment of Automated Electrical Systems, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentFaculty of Electrical and Environmental Engineering, Riga Technical University, 12/1 Azenes Str., Riga, 1048, Latviaen
local.contributor.departmentDepartment of Automated Electric Power Systems, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federationen
local.identifier.pure34655192-
local.description.order1730-
local.identifier.eid2-s2.0-85151942779-
local.identifier.wosWOS:000925094400001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85151942779.pdf1,82 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons