Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130319
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMatrenin, P. V.en
dc.contributor.authorKhalyasmaa, A. I.en
dc.contributor.authorRusina, A. G.en
dc.contributor.authorEroshenko, S. A.en
dc.contributor.authorPapkova, N. A.en
dc.contributor.authorSekatski, D. А.en
dc.date.accessioned2024-04-05T16:18:29Z-
dc.date.available2024-04-05T16:18:29Z-
dc.date.issued2023-
dc.identifier.citationMatrenin, PV, Khalyasmaa, AI, Rusina, AG, Eroshenko, SA, Papkova, NA & Sekatski, DA 2023, 'Оперативное прогнозирование скорости ветра для автономной энергетической установки тяговой железнодорожной подстанции', Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, Том. 66, № 1, стр. 18-29. https://doi.org/10.21122/1029-7448-2023-66-1-18-29harvard_pure
dc.identifier.citationMatrenin, P. V., Khalyasmaa, A. I., Rusina, A. G., Eroshenko, S. A., Papkova, N. A., & Sekatski, D. A. (2023). Оперативное прогнозирование скорости ветра для автономной энергетической установки тяговой железнодорожной подстанции. Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 66(1), 18-29. https://doi.org/10.21122/1029-7448-2023-66-1-18-29apa_pure
dc.identifier.issn1029-7448-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85151285626&doi=10.21122%2f1029-7448-2023-66-1-18-29&partnerID=40&md5=2fdfcba08628e8f86a01794288aa603f1
dc.identifier.otherhttps://energy.bntu.by/jour/article/download/2230/1861pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130319-
dc.description.abstractCurrently, the prospects of creating hybrid power assemblies using renewable energy sources, including wind energy, and energy storage systems based on hydrogen energy technologies are being considered. To control such an energy storage system, it is necessary to perform operational renewable sources generation forecasting, particularly forecasting of wind power assemblies. Their production depends on the speed and direction of the wind. The article presents the results of solving the problem of operational forecasting of wind speed for a hybrid power assembly project aimed at increasing the capacity of the railway section between Yaya and Izhmorskaya stations (Kemerovo region of the Russian Federation). Hourly data of wind speeds and directions for 15 years have been analyzed, a neural network model has been built, and a compact architecture of a multilayer perceptron has been proposed for short-term forecasting of wind speed and direction for 1 and 6 hours ahead. The model that has been developed allows minimizing the risks of overfitting and loss of forecasting accuracy due to changes in the operating conditions of the model over time. A specific feature of this work is the stability investigation of the model trained on the data of long-term observations to long-term changes, as well as the analysis of the possibilities of improving the accuracy of forecasting due to regular further training of the model on newly available data. The nature of the influence of the size of the training sample and the self-adaptation of the model on the accuracy of forecasting and the stability of its work on the horizon of several years has been established. It is shown that in order to ensure high accuracy and stability of the neural network model of wind speed forecasting, long-term meteorological observations data are required. © Belarusian National Technical University, 2023.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherBelarusian National Technical Universityen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations2
dc.sourceEnergetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associationsen
dc.subjectNEURAL NETWORKSen
dc.subjectRAILWAY ELECTRIFICATION SYSTEMen
dc.subjectWIND POWERen
dc.subjectWIND SPEED FORECASTINGen
dc.titleOperational Forecasting of Wind Speed for an Self-Contained Power Assembly of a Traction Substationen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.21122/1029-7448-2023-66-1-18-29-
dc.identifier.scopus85151285626-
local.contributor.employeeMatrenin, P.V., Novosibirsk State Technical University, Novosibirsk, Russian Federation, Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, Russian Federationen
local.contributor.employeeKhalyasmaa, A.I., Novosibirsk State Technical University, Novosibirsk, Russian Federation, Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, Russian Federationen
local.contributor.employeeRusina, A.G., Novosibirsk State Technical University, Novosibirsk, Russian Federationen
local.contributor.employeeEroshenko, S.A., Novosibirsk State Technical University, Novosibirsk, Russian Federation, Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, Russian Federationen
local.contributor.employeePapkova, N.A., Belarusian National Technical University, Minsk, Belarusen
local.contributor.employeeSekatski, D.А., Belarusian National Technical University, Minsk, Belarusen
local.description.firstpage18-
local.description.lastpage29-
local.issue1-
local.volume66-
local.contributor.departmentNovosibirsk State Technical University, Novosibirsk, Russian Federationen
local.contributor.departmentUral Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, Russian Federationen
local.contributor.departmentBelarusian National Technical University, Minsk, Belarusen
local.identifier.pure37148381-
local.identifier.eid2-s2.0-85151285626-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85151285626.pdf588,35 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons