Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130302
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorNizovtseva, I.en
dc.contributor.authorPalmin, V.en
dc.contributor.authorSimkin, I.en
dc.contributor.authorStarodumov, I.en
dc.contributor.authorMikushin, P.en
dc.contributor.authorNozik, A.en
dc.contributor.authorHamitov, T.en
dc.contributor.authorIvanov, S.en
dc.contributor.authorVikharev, S.en
dc.contributor.authorZinovev, A.en
dc.contributor.authorSvitich, V.en
dc.contributor.authorMogilev, M.en
dc.contributor.authorNikishina, M.en
dc.contributor.authorKraev, S.en
dc.contributor.authorYurchenko, S.en
dc.contributor.authorMityashin, T.en
dc.contributor.authorChernushkin, D.en
dc.contributor.authorKalyuzhnaya, A.en
dc.contributor.authorBlyakhman, F.en
dc.date.accessioned2024-04-05T16:18:10Z-
dc.date.available2024-04-05T16:18:10Z-
dc.date.issued2023-
dc.identifier.citationNizovtseva, I, Palmin, V, Simkin, I, Starodumov, I, Mikushin, P, Nozik, A, Hamitov, T, Ivanov, S, Vikharev, S, Zinovev, A, Svitich, V, Mogilev, M, Nikishina, M, Kraev, S, Yurchenko, S, Mityashin, T, Chernushkin, D, Kalyuzhnaya, A & Blyakhman, F 2023, 'Assessing the Mass Transfer Coefficient in Jet Bioreactors with Classical Computer Vision Methods and Neural Networks Algorithms', Algorithms, Том. 16, № 3, 125. https://doi.org/10.3390/a16030125harvard_pure
dc.identifier.citationNizovtseva, I., Palmin, V., Simkin, I., Starodumov, I., Mikushin, P., Nozik, A., Hamitov, T., Ivanov, S., Vikharev, S., Zinovev, A., Svitich, V., Mogilev, M., Nikishina, M., Kraev, S., Yurchenko, S., Mityashin, T., Chernushkin, D., Kalyuzhnaya, A., & Blyakhman, F. (2023). Assessing the Mass Transfer Coefficient in Jet Bioreactors with Classical Computer Vision Methods and Neural Networks Algorithms. Algorithms, 16(3), [125]. https://doi.org/10.3390/a16030125apa_pure
dc.identifier.issn1999-4893-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85151097376&doi=10.3390%2fa16030125&partnerID=40&md5=584a5ef1e324da31328b490bec768dad1
dc.identifier.otherhttps://www.mdpi.com/1999-4893/16/3/125/pdf?version=1679639197pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130302-
dc.description.abstractDevelopment of energy-efficient and high-performance bioreactors requires progress in methods for assessing the key parameters of the biosynthesis process. With a wide variety of approaches and methods for determining the phase contact area in gas–liquid flows, the question of obtaining its accurate quantitative estimation remains open. Particularly challenging are the issues of getting information about the mass transfer coefficients instantly, as well as the development of predictive capabilities for the implementation of effective flow control in continuous fermentation both on the laboratory and industrial scales. Motivated by the opportunity to explore the possibility of applying classical and non-classical computer vision methods to the results of high-precision video records of bubble flows obtained during the experiment in the bioreactor vessel, we obtained a number of results presented in the paper. Characteristics of the bioreactor’s bubble flow were estimated first by classical computer vision (CCV) methods including an elliptic regression approach for single bubble boundaries selection and clustering, image transformation through a set of filters and developing an algorithm for separation of the overlapping bubbles. The application of the developed method for the entire video filming makes it possible to obtain parameter distributions and set dropout thresholds in order to obtain better estimates due to averaging. The developed CCV methodology was also tested and verified on a collected and labeled manual dataset. An onwards deep neural network (NN) approach was also applied, for instance the segmentation task, and has demonstrated certain advantages in terms of high segmentation resolution, while the classical one tends to be more speedy. Thus, in the current manuscript both advantages and disadvantages of the classical computer vision method (CCV) and neural network approach (NN) are discussed based on evaluation of bubbles’ number and their area defined. An approach to mass transfer coefficient estimation methodology in virtue of obtained results is also represented. © 2023 by the authors.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnaukaen
dc.description.sponsorshipThe research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceAlgorithms2
dc.sourceAlgorithmsen
dc.subjectALGORITHMSen
dc.subjectAPPROXIMATIONen
dc.subjectBIOREACTORen
dc.subjectBUBBLE DETECTIONen
dc.subjectCANNY EDGE DETECTORen
dc.subjectCLUSTERING ALGORITHMSen
dc.subjectCOMPUTER VISIONen
dc.subjectDATA MARKUPen
dc.subjectEDGE DETECTIONen
dc.subjectFRANGI FILTER ACCURACYen
dc.subjectGAS—LIQUID FLOWSen
dc.subjectIMAGE PROCESSINGen
dc.subjectIMAGE QUALITY IMPROVEMENTen
dc.subjectJET STREAMen
dc.subjectKLAen
dc.subjectMASS TRANSFER COEFFICIENTen
dc.subjectNEURAL NETWORKSen
dc.subjectPHASE CONTACT AREAen
dc.subjectSTARDIST MODELen
dc.subjectVESSEL SEGMENTATIONen
dc.subjectAPPROXIMATION ALGORITHMSen
dc.subjectBIOCONVERSIONen
dc.subjectBIOREACTORSen
dc.subjectCOMPUTER VISIONen
dc.subjectDEEP NEURAL NETWORKSen
dc.subjectEDGE DETECTIONen
dc.subjectENERGY EFFICIENCYen
dc.subjectIMAGE ENHANCEMENTen
dc.subjectIMAGE SEGMENTATIONen
dc.subjectMASS TRANSFERen
dc.subjectAPPROXIMATIONen
dc.subjectBUBBLE DETECTIONen
dc.subjectCANNY EDGE DETECTORSen
dc.subjectCONTACT AREASen
dc.subjectDATA MARKUPen
dc.subjectFRANGI FILTER ACCURACYen
dc.subjectGAS LIQUID FLOWSen
dc.subjectIMAGE QUALITY IMPROVEMENTSen
dc.subjectIMAGES PROCESSINGen
dc.subjectJET STREAMSen
dc.subjectKLUMen
dc.subjectMASS-TRANSFER COEFFICIENTen
dc.subjectNEURAL-NETWORKSen
dc.subjectPHASE CONTACTen
dc.subjectPHASE CONTACT AREAen
dc.subjectSTARDIST MODELen
dc.subjectVESSEL SEGMENTATIONen
dc.subjectCLUSTERING ALGORITHMSen
dc.titleAssessing the Mass Transfer Coefficient in Jet Bioreactors with Classical Computer Vision Methods and Neural Networks Algorithmsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/a16030125-
dc.identifier.scopus85151097376-
local.contributor.employeeNizovtseva, I., Laboratory of Multiphase Physical and Biological Media Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation, Otto-Schott-Institut fur Materialforschung, Friedrich-Schiller University of Jena, Jena, 07743, Germanyen
local.contributor.employeePalmin, V., Moscow Institute of Physics and Technology, Moscow, 141701, Russian Federationen
local.contributor.employeeSimkin, I., Soft Matter and Physics of Fluids Centre, Bauman Moscow State Technical University, Moscow, 105005, Russian Federationen
local.contributor.employeeStarodumov, I., Laboratory of Multiphase Physical and Biological Media Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation, Department of Biomedical Physics and Engineering, Ural State Medical University, Ekaterinburg, 620028, Russian Federationen
local.contributor.employeeMikushin, P., Laboratory of Multiphase Physical and Biological Media Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation, Moscow Institute of Physics and Technology, Moscow, 141701, Russian Federationen
local.contributor.employeeNozik, A., Moscow Institute of Physics and Technology, Moscow, 141701, Russian Federationen
local.contributor.employeeHamitov, T., Moscow Institute of Physics and Technology, Moscow, 141701, Russian Federation, The Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, 117312, Russian Federationen
local.contributor.employeeIvanov, S., Department of High Performance Computing, ITMO University, Saint Petersburg, 197101, Russian Federationen
local.contributor.employeeVikharev, S., Laboratory of Multiphase Physical and Biological Media Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation, Department of High Performance Computing, ITMO University, Saint Petersburg, 197101, Russian Federationen
local.contributor.employeeZinovev, A., Department of Educational Programmes, Institute of Education Faculty, HSE University, Moscow, 101000, Russian Federationen
local.contributor.employeeSvitich, V., Laboratory of Multiphase Physical and Biological Media Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeMogilev, M., Soft Matter and Physics of Fluids Centre, Bauman Moscow State Technical University, Moscow, 105005, Russian Federationen
local.contributor.employeeNikishina, M., Laboratory of Multiphase Physical and Biological Media Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeKraev, S., Department of High Performance Computing, ITMO University, Saint Petersburg, 197101, Russian Federationen
local.contributor.employeeYurchenko, S., Soft Matter and Physics of Fluids Centre, Bauman Moscow State Technical University, Moscow, 105005, Russian Federationen
local.contributor.employeeMityashin, T., Laboratory of Multiphase Physical and Biological Media Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeChernushkin, D., NPO Biosintez Ltd, Moscow, 109390, Russian Federationen
local.contributor.employeeKalyuzhnaya, A., Department of High Performance Computing, ITMO University, Saint Petersburg, 197101, Russian Federationen
local.contributor.employeeBlyakhman, F., Laboratory of Multiphase Physical and Biological Media Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation, Department of Biomedical Physics and Engineering, Ural State Medical University, Ekaterinburg, 620028, Russian Federationen
local.issue3-
local.volume16-
dc.identifier.wos000952975000001-
local.contributor.departmentLaboratory of Multiphase Physical and Biological Media Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federationen
local.contributor.departmentOtto-Schott-Institut fur Materialforschung, Friedrich-Schiller University of Jena, Jena, 07743, Germanyen
local.contributor.departmentMoscow Institute of Physics and Technology, Moscow, 141701, Russian Federationen
local.contributor.departmentSoft Matter and Physics of Fluids Centre, Bauman Moscow State Technical University, Moscow, 105005, Russian Federationen
local.contributor.departmentDepartment of Biomedical Physics and Engineering, Ural State Medical University, Ekaterinburg, 620028, Russian Federationen
local.contributor.departmentThe Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, 117312, Russian Federationen
local.contributor.departmentDepartment of High Performance Computing, ITMO University, Saint Petersburg, 197101, Russian Federationen
local.contributor.departmentDepartment of Educational Programmes, Institute of Education Faculty, HSE University, Moscow, 101000, Russian Federationen
local.contributor.departmentNPO Biosintez Ltd, Moscow, 109390, Russian Federationen
local.identifier.pure37083882-
local.description.order125-
local.identifier.eid2-s2.0-85151097376-
local.identifier.wosWOS:000952975000001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85151097376.pdf29,41 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons